Cautionary Aspects of Cross Layer Design: Context, Architecture and Interactions

Vikas Kawadia and P. R. Kumar
Dept. of Electrical and Computer Engineering, and Coordinated Science Lab
University of Illinois, Urbana-Champaign

Phone 217-333-7476, 217-244-1653 (Fax)
Email prkumar@uiuc.edu
Web http://black.csl.uiuc.edu/~prkumar
Themes

- Setting the context
- Importance of Architecture
- Interactions and the Law of Unintended Consequences
- Concluding remarks
Wireless networks don’t come with links

- They are formed by nodes with radios
 - There is no \textit{a priori} notion of “links”
 - Nodes simply radiate energy
Nodes can cooperate in complex ways

Nodes in Group A cancel interference of Group B at Group C

... while Nodes in Group D amplify and forward packets from Group E to Group F

\[\text{SINR} = \frac{\text{Signal}}{\text{Interference + Noise}} \]

One strategy: Increase Signal for Receiver
Instead, why not: Reduce Interference at Receiver

One strategy: Decode and forward
Instead, why not: Amplify and Forward
How should nodes cooperate?

- Some obvious choices
 - Should nodes relay packets?
 - Should they amplify and forward?
 - Or should they decode and forward?
 - Should they cancel interference for other nodes?
 - Or should they boost each other’s signals?
 - Should nodes simultaneously broadcast to a group of nodes?
 - Should those nodes then cooperatively broadcast to others?
 - What power should they use for any operation?
 - ...

- Or should they use much more sophisticated unthought of strategies?

 “There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.”
 — Hamlet
On the optimality of the current proposal for ad hoc networks

- **Theorem: Xie and Kumar (2002)**
 - Multi-hop transport where
 - A packet is fully decoded at each hop
 - All interference from all other nodes is simply treated as noise
 - Is optimal up to a known multiplicative constant.
 (http://black.csl.uiuc.edu/~prkumar)

- **Properties**
 - Simple receivers
 - Simple multi-hop packet relaying scheme
 - Simple abstraction of “wires in space”

- This choice for the mode of operation gives rise to
 - Routing problem
 - Media access control problem
 - Power control problem
The importance of architecture

- Success of Internet is due to its architecture
 - Hierarchy of layers
 - Peer-to-peer protocols
 - Allows plug-and-play
 - Longevity
 - Important for proliferation of technology

- Success of serial computing
 - von Neumann bridge (Valiant)
 - Hardware designers and software designers need only to conform to abstractions of each other

- Control system paradigm
 - Plant and controller separation
Digital communication

- Shannon’s architecture

- Source code (Compression)
- Encode for the channel
- Channel
- Decode
- Source decode (Decompression)
Ever present tension between Performance and Architecture

- **Performance: The short term vision**
 - “Putting a link between layer A and layer B can improve performance by x%”
 - Consequences of this approach
 » Spaghetti code
 » Not modular
 » Not upgradeable
 » No longevity
 » High per unit cost
 - Value of a communication medium = Number of adoptees

- **Architecture: The long term view**
 » Mass production = Reduced cost over long term

- **Tension between Performance and Architecture**
Illustration by examples

- Example 1:
 Minimum hop routing over an Adaptive rate MAC

- Example 2:
 End-to-end feedback and topology control
Example 1
Adaptive Rate MAC

- **Idea:** Adapt transmission rate according to channel quality
 - Change modulation to get higher rate if channel is good
 - Could send multiple packets at higher rates (A suggested scheme)

- **Protocol details**
 - RTS/CTS and Broadcast packets sent at lowest rate
 - Receiver measures strength of RTS
 - Communicates rate to sender in CTS
 - DATA and ACK at that rate
One consequence: Interaction with Min Hop Routing Protocol

- Most current routing protocols are min hop
 - Consider DSDV for example
 - Chooses long hops
 - But long hops \Rightarrow low signal strength \Rightarrow low rates
Switching off adaptation is better

- In fact, plain 802.11 at 11Mbps gives higher end-to-end throughput
Verification by ns2 simulations

- Channel parameters such that at a fixed power level (0.28 W):
 - Distance of 0-99m \Leftrightarrow 11 Mbps
 - 99-198m \Leftrightarrow 5.5 Mbps
 - 199-250m \Leftrightarrow 2 Mbps

- Scheme 1: Adaptive scheme (A suggested scheme)
 - Equal time share to each rate
 - Send 5 packets at 11Mbps, 3 at 5.5 Mbps or 1 at 2 Mbps

- Scheme 2: 11 Mbps 802.11 (no cross layer)
 - Send packets only if distance is < 100m
A linear topology

- 18 nodes equally spaced in a 1500m long rectangle, 400m wide
- One TCP connection from node 0 to 17, starting at time 50
- DSDV routing protocol
- Carrier sensing disabled
Random topology

- 50 randomly located nodes in 1000x200m
- 5 simultaneous TCP connections, between distant nodes
- DSDV routing protocol
- No carrier sensing
Example 2
End-to-end feedback and topology control

- Two loops
 - Loop 1: Power control to drive Number of 1-hop neighbors to Target_degree
 - Loop 2: Target_degree controlled to increase Average end-to-end network throughput

- Loosely based on a suggested scheme
Adaptation rules

- Loop 1:
 Adjust transmit power every 15s, to maintain \(\text{Out_degree} = \text{Target_degree} \)

- Loop 2:
 Target_degree adaptation done every 90s
 - Rules for changing the Target_degree
 » Repeat change (+1 or -1) if throughput increased on previous iterate
 » Reverse action if throughput decreased on previous iterate
 » Increase Target_degree if throughput is zero
Details of system tested by simulation

- 23 nodes in 500x500 m area

- Each node has 5 discrete power levels
 - Corresponding to ranges of 100m, 140m, 180m, 220m and 250m
 - When the TwoRayGround propagation model is used

- One TCP connection from Node 0 to Node 3

- Power level 1 achieves Target_degree 5, even though the network is disconnected
Simulation topology
Consequence: Interaction with TCP dynamics

- Network may oscillate between connectivity and disconnectivity
- Bad for TCP
A random sample of cross layer design proposals

- Several suggestions for cross-layer design
 - Signal stability based routing
 - Transmit power based routing
 - Battery life based routing
 - Topology control using transmit power adjustment
 - Topology control using angle of arrival information
 - Power control by monitoring end-to-end throughput
 - Power control for energy efficiency
 - Traffic based sleeping strategies
 - TCP modifications for energy efficiency
 - Routing for improving network lifetime
 - Adaptive rate, adaptive power MAC protocols
 - QoS schemes based on routing and MAC parameters

- What are the consequences?
- What interactions are possible?
- What does the resulting code look like?
- What is the resulting architecture or lack of it?
- Longevity? Upkeep?
Themes

- Setting the context for cross-layer design optimization:
 - Infinitude of choices for operating wireless networks: What’s best?
 - A Theorem: The good news

- Importance of Architecture
 - Proliferation
 - Tension between performance and architecture
 - Longevity issue
 » Short term versus long term perspective

- Interactions and the Law of Unintended Consequences
 - Layers can interact
 - Loops can be formed
 - What is the nature of the interactions?

- Community needs to exercise caution before leaping into Cross-layer design

© P. R. Kumar
Concluding remarks

- Architecture is important
 - Often neglected

- Interactions exist
 - Often neglected

- Need to change the thrust of the work in cross-layer design to a more holistic perspective
 - Design schemes which have no adverse interactions against other layer or cross-layer design now (holistic across layers)
 - Design schemes good against other future bright ideas in any cross-layer (holistic across time)
To obtain papers

- Papers can be downloaded from

 http://black.csl.uiuc.edu/~prkumar

- For hard copy send email to

 prkumar@uiuc.edu