
Delay and Effective Throughput of Wireless Scheduling in
Heavy Traffic Regimes: Vacation Model for Complexity

Yung Yi∗
School of EECS, KAIST

Daejon, South Korea
yiyung@ee.kaist.ac.kr

Junshan Zhang†

EE Dept. Arizona State Univ.
Tempe, AZ, USA

Junshan.Zhang@asu.edu

Mung Chiang‡

EE Dept. Princeton Univ.
Princeton, NJ, USA

chiangm@princeton.edu

ABSTRACT
Distributed scheduling algorithms for wireless ad hoc net-
works have received substantial attention over the last decade.
The complexity levels of these algorithms span a wide spec-
trum, ranging from no message passing to constant/polynomial
time complexity, or even exponential complexity. However,
by and large it remains open to quantify the impact of mes-
sage passing complexity on throughput and delay. In this
paper, we study the effective throughput and delay perfor-
mance in wireless scheduling by explicitly considering com-
plexity through a vacation model, where signaling complex-
ity is treated as “vacations” and data transmissions as “ser-
vices,”with a focus on delay analysis in heavy traffic regimes.
We analyze delay performance in two regimes of vacation
models, depending on the relative lengths of data trans-
mission and vacation periods. State space collapse prop-
erties proved here enable a significant dimensionality reduc-
tion in the challenging problem of delay characterization.
We then explore engineering implications and quantify intu-
itions based on the heavy traffic analysis.
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1. INTRODUCTION

1.1 Overview and Motivation
Since the seminal work [25] on throughput maximization

for constrained queueing systems, there have been a surge
of interest in wireless scheduling with provable, topology-
independent performance-guarantees over wireless ad-hoc net-
works. As will be defined in the next section, throughput
and the associated stability region, has been the main ob-
ject to be maximized, often using the mathematical tech-
niques of fluid-models and Lyapunov theory. To overcome
exponentially high complexity and centralized operation of
the optimal algorithm in [25], referred to as the Max-Weight
(MW) scheduling, many distributed algorithms with lower
complexity have recently been studied. These include max-
imal and greedy scheduling, e.g., [3, 14, 29], decentralized
pick-and-compare, e.g., [8, 15, 18] as motivated by [24], and
constant-time random access, e.g., [10,13].

These distributed algorithms require the communication
overhead of message passing, which can be quantified by the
temporal measure of signaling complexity, or, in short, time
complexity: the fraction of time spent on communicating and
updating queue information. Such signaling overhead may
have significant impact on performance of considered dis-
tributed scheduling schemes. For example, even distributed
algorithms (e.g., [8, 15]), known to provably achieve opti-
mality in throughput with polynomial-time computational
complexity, need heavy message passing. The correspond-
ing “effective” performance, in terms of throughput and de-
lay after such complexity is taken into account, is not well
understood.

In this paper, we aim at analyzing effective throughput,
and then delay performance, of a large family of wireless
scheduling algorithms by explicitly considering complexity.
We model signaling time complexity by “vacation,” where
the system stops serving packets and takes vacation to com-
pute a new schedule. Using the vacation model, we intro-
duce Generalized Max-Weight (GMW) scheduling as a gen-
eral family of scheduling algorithms that include many ma-
jor classes of distributed algorithms in the literature.

The impact of signaling overhead on delay characteriza-
tion presents a particularly demanding challenge. In spite
of significant effort towards wireless scheduling research with
throughput-guarantee, delay performance is generally an under-
explored area, mainly due to technical intractability when
applying the following three popular approaches:

1. Standard queueing analysis does not work well for schedul-
ing algorithms in large-scale distributed systems, since
it is intractable to explicitly characterize the stationary



queue-length distribution due to the complex coupling
between the queue sizes and employed scheduling al-
gorithms. There exists some work [9] that reduces the
original system to a simpler system enabling compu-
tation of delay bounds.

2. Bounds (on the sum of stationary queue length over
all links) have been studied using Lyapunov technique
in e.g., [11, 16, 30]. Similar techniques have been used
in [30] to study the 3-dimensional tradeoff among time
complexity, throughput, and delay, which generalizes
the 2-dimensional tradeoff between complexity and through-
put in [17, 18]. However, Lyapunov bounds are often
very loose.

3. Large deviation techniques provide another alternative
to the study of delay, e.g., in [20, 23, 26, 31]. How-
ever, due to dimensionality the proof techniques are
not scalable, and only small networks with restrictive
topologies allow exact analysis.

In this paper, we advocate the use of a fourth approach:
namely heavy traffic approximation, develop the correspond-
ing theory for the problem of wireless scheduling with over-
head accounting, and apply it to our vacation model. The
benefits of this approach will be illustrated in the subsec-
tions on engineering implication. Simply put, heavy traffic
analysis focuses on the network model with bottleneck links
(i.e., arrival volumes are almost close to system capacities
at these links). One can approximate the original system
Q(t) = {Ql(t)}1 by considering a sequence of systems, ap-
propriately scaled in time and space, and studying the limit-
ing system. The limiting system is often an interesting one
that allows surprising mathematical tractability and lends
significant insights to the engineering of scheduling beyond
the existing analysis.

However, technical challenges of the heavy traffic approach
are also substantial. In particular, as an important interme-
diate step for dimensionality reduction, one needs to prove
the state space collapse property, which allows the original
multi-dimensional queue length vectors to be expressed as a
scaled version of a one-dimensional workload process. These
proofs tend to be challenging.

Although the state-space collapse technique has also been
used in multi-class queueing networks, e.g., [2,28], consider-
ing vacations over various regimes to include signaling com-
plexity entails additional technical difficulties. For example,
heavy traffic analysis of scheduling in [19, 21, 22] does not
consider signaling complexity, which is the main focus in this
work. A more general stochastic network is considered for
heavy traffic analysis in [7], again without considering sig-
naling complexity. Similarly, vacation models for queueing
networks in [1,4,12] has only studied much simpler systems,
e.g., a single-server queue or polling systems.

1.2 Main Contributions and Organization

• In Section 2, we first propose a new scheduling fam-
ily, GMW (Generalized Max-Weight), that enables us
to explicitly consider signaling complexity as well as
cover many distributed algorithms in literature. In
Section 3, we study the effective throughput of the
GMW.

1Ql(t) is the queue length stochastic process of link l.

• In Section 4.2, we consider a regime where the aver-
age vacation duration and transmission duration are
comparable and are both of O(1). As expected, the
limiting process of the scaled process in this regime
turns out to be a reflected Brownian motion. We pro-
vide mean workload analysis for delay performance us-
ing the statistical properties of the reflected Brownian
motion. Different from Lyapunov bounds on the delay,
our results on the limiting workload process provide an
exact characterization of the average delay.

• In Section 4.3, in contrast to Regime I, we explore a
regime where the average transmission duration is sig-
nificantly larger than the average vacation duration.
In this regime, vacation periods are relatively small,
compared to transmission periods, where it is expected
that possibly higher throughput can be achieved and
yet infrequent schedule updates may lead to larger de-
lay. Technically, we let the average transmission du-
ration scale together with the diffusion scale n while
fixing the average vacation duration to be O(1). This
regime generates much deeper technical difficulties, es-
pecially in terms of proving the state-space collapse
property. Significantly different from Regime I, the
limiting process can be either a reflected Brownian mo-
tion or its mixture with stable Levy motion, depending
on the system parameters used in the analysis. Accord-
ingly, our results indicate that due to infrequent up-
dates, larger average transmission durations may lead
to larger delay and even grow unbounded under some
conditions.

1.3 Notation
We use capital letters, say X or X(t), to refer to a random

variable or random process. We use a · b to denote the inner
product of two vectors a and b. The boundary of a set A is
denoted by ∂(A), and [x], x ∈ R refers to the large integer no
greater than x. As is standard, for a given random process
X(t), we use x̃n(t) and x̂n(t) to refer to the fluid-scaled and
the diffusion-scaled processes of X(t) in the n-th system,
respectively, i.e.,

x̃n(t) =
X(nt)

n
, x̂n(t) =

X(n2t)

n
.

Throughout this paper, we use the superscript n to index the
sequence of random variables or processes. For a sequence
of processes {Xn(t) : t ≥ 0}, we use Xn(t) ⇒ X(t) to
denote “weak convergence,” or equivalently “convergence in
distribution.” Let Lα(t) denote α-stable Levy motion where
0 < α ≤ 2. In the special case α = 2, Lα(t) boils down to
a standard Brownian motion, which we denote by B(t). We
use Φ(f) to denote the one-dimensional reflection mapping
of a process f(t), f(0) ≥ 0:

Φ(f)(t) = f(t) − inf
0≤s≤t

“

f(s) ∧ 0
”

,

where a ∧ b = min(a, b). Roughly speaking, Φ generates the
“reflection” of f around the horizontal axis.

2. GMW SCHEDULING AND VACATION
MODEL FOR COMPLEXITY

2.1 System Model
Network Model. We model a wireless multi-hop network

by a graph G(L, N), where L and N denote the set of (bi-
directional) links and the set of nodes, respectively. When



..........

Vi slots

..........

Uι slots

..........

V
i+1 slots

..........

U
i+1 slots

signaling

same same

signalingdata data

i-th phase (i+1)-th phase

sched. computation

t t+1

schedule based on Q(t)

Figure 1: Generalized max-weight scheduling with
vacation: Vi slots are used to compute a newly com-
puted max-weight schedule, which is used for Ui slots
starting at shaded time instances.

it is clear from the context, we abuse the notation and use
L and N to refer to the number of links and nodes. The
wireless system has a single channel (e.g., frequency or code),
and each node is time-synchronized and has a half-duplex
radio. We assume that time is slotted, indexed by t. For
simplicity, we assume that one slot length is chosen to serve
one fixed-size packet that is normalized to one unit.

Signaling Model. In a distributed scheduling, nodes typ-
ically exchange messages to inform their states (e.g., queue
length information) to other nodes, then the states are used
to determine a schedule during a slot. We refer to the time
to exchange control message as signaling time. Therefore, a
time slot can be one of the following two states: signaling
or data transmission (simply transmission). In the state of
signaling, the system stops serving packets and takes “vaca-
tions” to exchange signaling messages. We will discuss more
details on a class of scheduling algorithms considered in this
paper, as well as vacation modeling at Subsection 2.2. We
denote by V (t) and U(t) the cumulative number of vacation
and transmission slots until time t, respectively. Clearly
V (t) + U(t) = t.

Traffic Model. In this study, we consider single-hop ses-
sions, i.e., each link is fed by exogenous arrivals. We denote
by Al(t) the number of arrivals over link l at slot t, assumed
to be i.i.d, and also independent across links. Note that ar-
rivals occur regardless of the state of a slot, i.e., signaling or
transmission. We let E[Al(t)] = λl, and VAR[Al(t)] = (σa

l )2.
Denote by Fl(t) and Gl(t) the number of cumulative arrivals
and departures over link l over the slot interval [0, t], respec-
tively.

Resource Model. The network resources are represented
by a finite set S ⊂ {0, 1}L of the link schedules. A link sched-
ule, or simply a schedule, S = (Sl ∈ {0, 1} : l = 1, . . . , L),
is a vector representing the set of scheduled links without
any interference, where Sl = 1 if the link l is scheduled, and
0 otherwise. The set S depends on interference patterns
among links. We model interference by a L × L symmetric
matrix I = [Iij ], where Iij = 1 means that links i, j interfere
with each other. This interference model generalizes popu-
lar one-hop (appropriate for Bluetooth and FH-CDMA) or
two-hop (appropriate for IEEE 802.11) interference models.
The set S of all link schedules are indexed by a set J . We
denote by Sj = (Sj

l , l ∈ L), j ∈ J the j-th schedule in S.
Then, a scheduling algorithm chooses a sequence of sched-
ules (S(t), t = 0, 1, . . . , S(t) ∈ S), where the schedule S(t) is
applied to the network whenever a slot t is not in vacation.

2.2 GMW with Vacation

2.2.1 Description
We now describe a class of scheduling algorithms, referred
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Figure 2: s(t) for a given slot t.

to as generalized max-weight (GMW) scheduling. In GMW,
as conceptually depicted in Figure 1, entire time slots are
divided into phases, each of which consists of vacation phase
and transmission phase. One vacation phase (as well as a
transmission phase) takes multiple consecutive slots. We
denote by Vi and Ui the i.i.d. random lengths (i.e., number
of slots) of i-th vacation and transmission phase (or simply
i-th vacation and transmission duration), respectively2. We
also denote by T (t) the cumulative number of phases over
the slot interval [0, t].

To get a more concrete sense of how the schedules are
updated, we recall the well-known Max-Weight (MW) rule:
For a given queue length Q = (Ql)l∈L, a schedule by the
MW rule is one that maximizes an “aggregate weight” over
all schedules, i.e.,

S? = max
S∈S

“

Q · S
”

. (1)

The system spends Vi slots on computing a new max-weight
schedule for the queue lengths at the beginning slot of the va-
cation phase Vi. The scheduled links by the new max-weight
schedule performs data transmission during the subsequent
transmission phase that spans Ui slots. GMW is essentially
an algorithm that computes a max-weight schedule and up-
date it after a vacation phase.

Denote by Ql(t) the queue length of link l at slot t. Let
CS(t) be the cumulative number of slots that use the sched-
ule S ∈ S until slot t. To facilitate the characterization of
queueing dynamics, we keep incrementing CS(t) at a va-
cation phase, say i, when the schedule S was used at the
previous transmission phase i− 1. We have

P

S∈S CS(t) = t
(i.e., (4)). However, obviously actual data transmissions do
not occur at the i-th vacation phase.

The queueing dynamics is represented by:

Ql(t) = Ql(0) + Fl(t) − Gl(t), (2)

Gl(t) =
X

S∈S

t
X

τ=1

“

Sl1{Ql(t)>0}(U(τ) − U(τ − 1))

×(CS(τ) − CS(τ − 1))
”

(3)
X

S∈S

CS(t) = t, CS(·) is non-decreasing. (4)

Note that U(τ) − U(τ − 1) is ‘1’ when the slot τ is in a
transmission phase, and ‘0’ in a vacation phase. The fact
that CS(τ) − CS(τ − 1) = 1 means that a schedule S is
(potentially) used at slot τ , as long as τ is not in vacation
phase, i.e., U(τ) − U(τ − 1) = 1.

For a given slot t, denote by s(t) the beginning slot of
the vacation phase prior to the phase (either vacation or
transmission) that a slot t belongs to, as shown in Figure 2.
Then, the GMW scheduling adds the its own unique dynam-

2The i.i.d assumption of Al(t), Vi, and Ui can be readily ex-
tended to more general correlated models under reasonable
conditions.



ics (based on the MW rule) to (2), (3), and (4):

CS(t + 1) = CS(t) if Q(s(t)) · S < Q(s(t)) · S′, (5)

for some schedule S′. This is due to the fact that a schedule
at some slot t is a max-weight schedule based on the queue
length at slot s(t). We assume a random tie-breaking rule
when there exists multiple MW schedules.

2.2.2 Generality of GMW with Vacation
Delay analysis of the GMW scheduling family, which in-

cludes many existing scheduling mechanisms, is useful for a
number of reasons.

First, the Max-Weight rule [25] is known to be prov-
ably throughput-optimal, if the complexity of passing in-
formation to the centralized controller is ignored. The Max-
Weight rule requires very high complexity as it is reduced to
an NP-hard WMIS (Weighted Maximum Independent Set)
problem. Its various distributed implementations take sig-
nificant signaling time too, as discussed in Section 1. The
GMW scheduling framework explicitly considers signaling
time by introducing vacations, and the vacation duration
would be dependent on network size.

Second, the idea of infrequent updates with max-weight
schedules can be exploited to provide a good way to develop
a low-complexity scheduling and understand its fundamen-
tal principle. To elaborate, in [24], a randomized technique
has been introduced, called pick-and-compare to overcome
high complexity in the Max-Weight rule: The basic idea was
that (i) first randomly choose any schedule out of all possible
schedules (with guarantee of a lower bound on probability
to find a max-weight schedule), (ii) compare the aggregate
weight of the randomly-chosen schedule to that of the previ-
ous schedule, and finally (iii) choose the schedule with larger
aggregate weight. Extensions of pick-and-compare is also
provably throughput-optimal with polynomial complexity,
again ignoring the time complexity that forms the focus of
this paper, and has been widely applied to many types of so-
phisticated distributed scheduling algorithms, e.g., [8,15,18].
It turns out that pick-and-compare is a“version”of the Max-
Weight scheduling with infrequent schedule update, such
that once a schedule is determined, then the same sched-
ule (or a better schedule at least due to weight comparison)
is repeated for some duration [30].

Therefore, the GMW framework generalizes an array of
scheduling algorithms based on the idea of max-weight, yet
is more practically accurate by considering signaling com-
plexity. To reflect the random nature of signaling complex-
ity as well as transmission durations (e.g., pick-and-compare
algorithms), we model vacation and transmission durations
by random variables in the GMW.

2.3 Performance Metrics
Throughput. A central performance metric of scheduling is

the throughput, for which we first define a notion of through-
put region as follows:

Definition 1 (Throughput Region). The throughput
region Λ is the set of all mean arrival rate vectors λ = (λl :
l ∈ L) that is rate-stabilized by some scheduling scheme,
where the system is rate-stable for a given λ, if
λl = limt→∞ Gl(t)/t, a.s., for all l ∈ L.

The throughput region is interpreted as the maximum
achievable throughput. As mentioned earlier, the resource
occupied by signaling would incur throughput loss, indicat-
ing that even the Max-Weight rule may become sub-optimal

after taking into account signaling complexity. To quantify
such sub-optimality due to signaling complexity, in what fol-
lows we introduce γ-effective throughput optimality.

Definition 2 (γ-effective-throughput-optimality).
A scheduling algorithm Π is γ-effective-throughput-optimal,
if it can stabilize the system for any λ ∈ γΛ, after tak-
ing into account the throughput loss due to signaling over-
heads. Then, γ is said to be effective-throughput-ratio3 of
the scheduling algorithm Π.

Delay. Characterizing the exact delay performance met-
rics, such as the stationary distribution of the queue lengths
or even the exact aggregate total queue length over links, has
been known to be very challenging and been open for a long
while, due to complex queueing dynamics. As an efficient
means to extract implications on delay, we focus on scenar-
ios when the system has (unique) bottleneck links, i.e., these
links are heavily loaded, i.e., arrival intensities are very close
to the boundary of the achieved throughput region.

3. EFFECTIVE THROUGHPUT OF GMW
AND TWO REGIMES

3.1 Effective Throughput of GMW
We first study the effective throughput of GMW. Recall

that {Vi} and {Ui} denote the i.i.d. vacation durations and
transmission durations. Let α and β be the corresponding
expectations, i.e.,

E[Vi] = α, E[Ui] = β.

For convenience, we refer to GMW with such parameters as
GMW(α, β). Theorem 1 characterizes the effective through-
put of GMW(α, β).

Theorem 1 (Effective Throughput of GMW). The

GMW(α, β) is ( β
α+β

)-throughput optimal.

The effective throughout can be obtained by using the
fluid-limit approach [6], while taking into account the ad-
ditional complication due to interleaved vacations and data
transmissions. We outline the key steps as follows: 1) on av-

erage, β
α+β

per unit time is used for data transmission, which

leads to ( α
α+β

) throughput-reduction, and 2) a repeated use

of the same scheduling (e.g., a max-weight schedule at a
transmission phase for the queue length at the beginning slot
of each vacation phase) during a finite number of slots would
not impact the asymptotic stability region. More specifi-
cally, it has the same stability region that is achieved by the
modified system, where, instead of using a same schedule
repeatedly during a transmission phase, max-weight sched-
ules are computed and used per-slot during the transmission
phase (note that vacation phases still exist as in the original
system).

3.2 Two Regimes
We shall develop heavy traffic approximations for the de-

lay performance of the GMW family. Similar to congestion
control in spirit, heavy traffic approximation focuses on net-
work models with bottleneck links (i.e., arrival volumes are
almost close to system capacities at these bottleneck links).

3We henceforth omit the word ‘effective’ for simplicity, un-
less necessary.



For such network models, one can approximate the original
system Q(t) = {Ql(t)} by considering a sequence of sys-
tems, appropriately scaled in time and space, and studying
the limiting system. Roughly speaking, the trajectory of the
scaled system over a closed interval, where the time axis is
stretched by n2 and the space is scaled down by n, offers
good approximation for the original system for large n.

Consider the vacation model for GMW scheduling. Intu-
itively speaking, the higher the complexity is, the longer the
vacation phases are. The larger the transmission phases are,
then less frequent the scheduling updates are. Recall that in
general the vacation and transmission durations are random.
We shall develop diffusion approximations of the delay per-
formance, for the following continuum of regimes that are
differentiated by transmission and vacation durations: the
average vacation duration is O(1); and the average trans-
mission duration depends on the scaling parameter n, i.e.,
O(n2−r), for some constant 1 < r ≤ 2. Roughly speaking,
for r > 0, the transmission duration also increases as the
scaling parameter n increases, and this is applicable to sys-
tems when the network is operated at relatively lower sig-
naling complexity and schedules are updated less and less
frequently. In an extreme case with r = 2, both average
transmission and average vacation durations are O(1), which
models a system with constant (average) signaling complex-
ity and transmission duration. More formally, we define two
regimes4 to differentiate the case with 1 < r < 2 from the
degenerate case with r = 2.

Regime I: Both average transmission duration and av-
erage vacation duration are O(1).

Regime II: The average vacation duration is O(1), but
the average transmission duration increases
with the scaling parameter n, i.e., O(n(2−r)),
for some constant 1 < r < 2.

4. HEAVY TRAFFIC DELAY ANALYSIS

4.1 CRP and Workload Process
The workload process is a critical metric in heavy traf-

fic analysis, where the workload is defined as the amount
of time to drain all the queues. In what follows, we for-
mally define the workload process through a linear optimiza-
tion problem, by which we introduce a standard condition,
namely CRP (Complete Resource Pooling). Simply put, the
CRP condition holds the key to establish the state space
collapse property, which makes it possible to express the L-
dimensional queue length process as a scaled version of a
one-dimensional workload process, thus overcoming the key
bottleneck of high dimensionality in delay characterization.

Consider a γ-throughput-optimal scheduling algorithm in
the GMW family. Since we explicitly consider signaling
time using vacations, the algorithm may have sub-optimal
throughput performance (i.e., γ < 1), whereas in the “tradi-
tional” analysis of MW scheduling, γ is always one. We refer
the readers to [2, 7,19,21,22] for the similar CRP condition
in other types of networks.

Consider the following primal problem:

(Primal) max c,

4We exclude the case with 0 < r ≤ 1 since it is not mean-
ingful.

s. t.
X

j∈J

ζiS
j
l ≥ cλl, ∀l ∈ L,

X

i∈J

ζj = γ,

c ∈ R, ζj ≥ 0,∀j ∈ J ,
variables c, ζ = (ζj : j ∈ J )

constants λ = (λl), S = (Sj), γ (6)

First, note that for any stabilizable arrival vector λ (i.e.,
λ ∈ γΛ), we can find the constants (ζj : j ∈ J ), such that
P

j∈J ζjS
j ≥ λ, and

P

j∈J ζj ≤ γ. The ζj can be inter-
preted as the long-term fraction of time that the schedule
Sj is used. Therefore, the above problem is find the max-
imum value by which λ can be scaled up-to the boundary
of the throughput region, γΛ. Intuitively, c can be regarded
as “distance” between λ and the boundary of the achieved
throughput region.

We can regard ρ = 1/c? as the system load, where c? is
the optimal solution of the primal problem. Obviously, if
c? = 1, then λ turns out to be exactly at the boundary of
γΛ.

Next, consider the corresponding Lagrange dual problem:

(Dual) min γ β,

s. t.
X

l∈L

ηlλl = 1,

β ≥
X

l∈L

ηlS
i
l ,∀i ∈ I

β ∈ R, ηl ≥ 0, ∀l ∈ L,
variables β, η = (ηl : l ∈ L)

constants λ = (λl), S = (Sj), γ. (7)

Each pair of (η, β) that are in the constraints of Dual
is said to be a resource pool. The ηl is interpreted as the
work dedicated to a unit of the buffer of the link l by the
resource pool. A bottleneck pool is defined to be an opti-
mal solution (η?, β?) (that may not be unique) to the Dual
problem. If the bottleneck pool is unique, we say that the
given arrival vector λ satisfies the complete resource pooling
(CRP) condition.

To get a more concrete sense of the physical meaning of the
CRP condition, the arrival vector λ = (λl : l ∈ L) satisfying
CRP condition is such that it lies in the relative interior of
one of the faces of the corresponding throughput region γΛ.
As a simple example, consider two interfering links with unit
capacity, and fed by dynamic arrivals with means λ1 and λ2,
respectively. Then, the maximum throughput region (that
may be achieved by MW scheduling assuming that signal-
ing complexity is zero) is the convex polyhedron connecting
(0, 1) and (1, 0) having one face. Then, λ = (0, 1) or (1, 0)
does not satisfy CRP condition, whereas (0.5, 0.5) does.

The CRP condition enables us to uniquely define the work-
load process, as well as provide useful properties in heavy
traffic analysis (e.g., see Step 1 of the proof of Theorems 2
and 3 at the appendix). Formally, for a unique bottleneck
pool (η?, β?), we define the notion of workload process, given
by:

Definition 3 (Workload Process). The workload pro-
cess W (t) is the average total work of the bottleneck pool,
i.e.,

W (t) , η? · Q(t)
= η? · Q(0) + η? · F (t) − η? · G(t) (8)

We will consider a system with arrival vectors satisfying
CRP condition. For notational simplicity, we henceforth use



just η instead of η? to be the solution of the Dual problem.
In the next two sections, we study the workload processes
in different regimes under the CRP condition.

4.2 Delay Performance in Regime I
We start with the regime where the transmission and va-

cation durations are of O(1), both with finite variances, i.e.,

Regime I: E[Ui] = u, E[Vi] = v,

where u and v are positive constants. Let VAR[Ui] = (σu)2,
and VAR[Vi] = (σv)2. Recall that GMW in Regime I is
( u

u+v
)-throughput optimal.

4.2.1 Heavy Traffic Diffusion Approximation
A heavy traffic regime refers to a model with bottleneck

links, and if the arrival rates at these links satisfy the CRP
condition, we will show that the L-dimensional queue lengths
can be well approximated by a scaled version of a one-
dimensional process workload process.

Consider a sequence of systems, indexed by n. In particu-
lar, the arrival vectors are denoted by λn. The heavy traffic
condition in Regime I is given by:

A1. As n → ∞, for some b > 0,

n × η · (λn − λ) → −b, (9)

where {λn} and λ ∈ ∂(( u
u+v

)Λ) satisfy CRP condition.

In Regime I, the throughput ratio is u/(u+v). Thus, for an
arrival rate λ at the boundary of the throughput region, the
fact that λn approaches λ with the rate of η(λn −λ) ∼ 1/n,
implies that for a large n, λn ≈ λ, i.e., the network is heavily
loaded.

Recall that ŵn(t) and q̂n(t) are the diffusion-scaled work-
load and the queue-length process in the n-th system, re-
spectively. For convenience, define ξi = ηi/

PL
l=1 η2

l . We
have the following result for Regime I.

Theorem 2. In Regime I, under Assumption A1, as n →
∞,

(ŵn, q̂n) ⇒ (w?, q?), (10)

where w? = Φ(z?), q? = ξ × w?, and

z?(t) = w?(0) − bt +
X

l∈L

ηlσ
a
l Bl(t)+

µ

„

uσv

u + v
Bv

“ t

u + v

”

− vσu

u + v
Bu

“ t

u + v

”

«

, (11)

where µ , maxS∈S η · S, and Bl(t), Bv(t), and Bu(t) are
independent standard Brownian motions.

The proof follows the same line as that of Theorem 3 pre-
sented in the Appendix.

Based on Theorem 2, we have a few remarks in order:
1) The process z?(t) is the virtual workload process, as-

suming that there always exist packets to serve in ev-
ery queue. Thus, z?(t) can be sometimes negative, since
random arrivals allow queues to be un-backlogged. The
reflection map Φ is responsible for “correcting” z?(t) by
reflecting it and leads to the real workload process w?(t)
that is always non-negative.

2) The vector ξ corresponds to the “inverse” of the vector
η. The fact that q? = ξ × w? points to the state space
collapse property: L-dimensional queue length process
can be represented by a constant multiple of the one-
dimensional workload process.

3) The parameter µ corresponds to the maximum possible
amount of workload that could potentially be served at a
time-slot when the system is in a transmission phase.

4.2.2 Engineering Implications

(1) Approximation for average workload

We elaborate further on the engineering implications of
Theorem 2. Let RBMX(θ, σ2) denote the reflected process
of a Brownian motion X with drift θ and variance σ2. Then,
the process RBMX(θ, σ2) has a stationary distribution if θ <
0, in which case the stationary distribution is exponential
with mean −σ2/2θ [27].

Theorem 2 indicates w?(t) = RBMz?(−b, (σ∗
w)2), where

(σ∗
w)2 =

X

l∈L

(ηlσ
a
l )2 +

µ2

(u + v)3/2

`

(uσv)2 + (vσu)2
´

.

Then, it follows that

average total workload = (σ∗
w)2/2b. (12)

The above result on the average total workload can then
be used to approximate the delay performance of GMW
scheduling while taking into consideration of the through-
put loss due to signaling complexity.

(2) Impact of network size on delay

A system designer may desire to design a scalable system
that provides fixed throughput regardless of the network size
(i.e., the number of links). The main design parameters are
u, v and σu, and σv, determined by a scheduling algorithm
chosen by the designer. We consider the case when the de-
signer can control only u and v, but σa

l , b, σv, and σu stays
the same. Note that due to the NP-hard property, v ∼ 2L.
Thus, to achieve a fixed throughput γ , u/(u+v), u should
also scale as 2L.

Consider the average workload per link defined as the aver-
age total workload divided by L. Remarking that

P

l∈L(ηlσ
a
l )2 ∼

L, µ2 ∼ L2 (because µ = η · λ), and u, v ∼ 2L, we have:

average workload ∼ 1

L
(L + L24L) = O(4L). (13)

That is to say, the delay increases exponentially (to sup-
port a fixed throughput performance) with the network size
L. It is worth noting that this result, based on Theorem 2,
provides an exact characterization of the average delay, dif-
ferent from the delay bound computed from the Lyapunov
approach, e.g., in [11,30]. It is known that the bound based
on the Lyapunov approach is tight in terms of order only
for restricted network topologies with special structures. In
contrast, our complementary approach produces results that
apply to any network topology, but under the heavy traffic
regime only.

4.3 Delay Performance in Regime II(r)
In this section, we consider a regime where the transmis-

sion duration is much larger than that of a vacation phase.
Technically, we impose that E[Ui] scales together with the
diffusion parameter n, and E[Vi] remains constant, i.e., for
some random variable U ′

i ,

Regime II(r): Un
i = n(2−r)U ′

i , E[U ′
i ] = u, E[Vi] = v, (14)

for some 1 < r < 2, and u and v are positive constants. Let
VAR[U ′

i ] = (σu)2, and VAR[Vi] = (σv)2.
By the Renewal Theorem, for large n, the total number

of phases (thus also vacation phases as well as transmission



phases) at the diffusion-scale, is given by5: T (n2t) ∼ nrt/u.
Then, it is not hard to see (14) implies the following on
the vacation process: for the same r in (14), there exists
0 < v̄ < ∞, such that

V (n2t)

nr
⇒ v̄t, where v̄ = v/u. (15)

4.3.1 Heavy Traffic Diffusion Approximation
Next, we study the limiting workload process on the dif-

fusion scale. Compared to A1 for Regime I, the impact of
vacation is directly taken into account in the heavy traffic
condition for Regime II(r).

A2. As n → ∞, for some b > 0,

n × η ·
“

λn − λ(1 − v̄nr−2)
”

→ −b, (16)

where the term v̄nr−2 corresponds to the vacation per
unit time in the n-th system, and {λn} and λ(1 −
v̄nr−2) satisfy the CRP condition.

Note that in A2, the quantity λ(1 − v̄nr−2) corresponds
to the throughput region of the n-th system for large n. We
emphasize that Regime II(r) is an approximation model for
the cases where the network operates at lower complexity
and the scheduling is updated less and less frequently, so as
to achieve high throughput. However, the throughput is still
governed by Theorem 1. We will elaborate further on this
in the proof of Theorem 3.

We present the main result in Regime II(r), whose proof
is relegated to the Appendix.

Theorem 3. In Regime II(r), under Assumption A2, as
n → ∞,

(ŵn, q̂n) ⇒ (w?, q?), (17)

with

z?(t) = w?(0) − bt +
X

l∈L

ηlσlBl(t) + µ(C(t) − v̄D(t)),

where {Bl(t) : l ∈ L} are independent standard Brownian
motions, and C(t) and D(t) are some random processes for
which, as n → ∞,

V (n2t) − v̄tnr

n
⇒ C(t) (18)

U(n2t) − tn2

n(3−r)
⇒ D(t). (19)

In order to quantify the delay performance in Regime II(r)
(Subsection 4.3.3), it is essential to characterize C(t) and
D(t) rigorously (Subsection 4.3.2). We first make two re-
marks.
1) The state-space collapse property is a cornerstone step for

establishing the heavy traffic limiting processes. As clear
in the proof (in the appendix), the local-fluid limit is of
critical importance to state-space collapse. Furthermore,
to construct the local-fluid limit, each piece of fluid-scaled
process should have enough realizations of transmission
and vacation phases for FSLLN (Functional Law of Large
Numbers) to be applicable, which is only possible when
n2−r < n, making it necessary to have 1 < r < 2.

5We abuse the notation and use T (·) to denote the random
process T (n2t) and T to denote time T .

2) Note that (18) and (19) have similar structures, since
U(n2t) includes nr random realizations of transmission

phases. Recall that Ui = n(2−r)U ′
i , and define U ′(t) ,

U(t)

n(2−r) . Then, we can rewrite (19) as:

U ′(n2t) − tnr

n
⇒ D(t), (20)

which takes a similar form to (18).

4.3.2 Understanding C(t) and D(t)

We now focus on quantifying C(t). Similar results can be
carried over to D(t).

Observe that when r = 2, C(t) boils down to a Brownian
motion. Due to large transmission phases in Regime II(r),
the process V (n2t) needs to be centered with v̄tnr (see (15))
to characterize its variability. We will present that C(t)
differs, depending on the variance of Vi (U ′

i for D(t)).

(1) The finite variance case.

In this case, we show that C(t) = 0, a.s. Specifically,
note that T (n2t) = O(nrt) and that T (n2t)/nr → t

u
u.o.c..

Define

A ,
Pnr T (n2t)

nr

i=1 Vi

nr
− v

T (n2t)

nr

B , nr−1

„

v
T (n2t)

nr
− v̄tnr

«

. (21)

Then, it is easy to see that

V (n2t) − v̄tnr

n
= n(r/2−1)nr/2A + nr−1B.

Appealing to Random-Time Change Theorem [5], we con-

clude that nr/2A converges to a Brownian motion. Since
n(r/2−1) is decreasing for 1 < r < 2, n(r/2−1)nr/2A vanishes.
The term nr−1B also vanishes since T (n2t)/nr → t

u
.

(2) The infinite variance case.

By definition, infinite variance indicates that Vi is heavy-
tailed. We have the following assumption6.

A3. The complementary CDF of Vi satisfies the following:

P{|Vi| > x} ≈ Kx−α, as t → ∞,

for some 0 < α < 2, and some constant K.

Next, we show that the limiting process C(t) hinges on
the relationship between α and r. We first state the following
intuitions, using FCLT (Functional Central Limit Theorem)
for partial sums of heavy-tailed i.i.d. random variables [27]:

V (n2t) − v̄tnr

nr/α
⇒ Lα(t/u). (22)

Recall that for the finite variance case, it is enough to
space-scale the system by nr/2 for the convergence to a
Brownian motion. A key observation of (22) is that for the
partial sums with heavy-tailed random variables, we need to
space-scale the process with higher order (depending on the
constant α) for the convergence to a limiting process.

To treat more formally, we first re-arrange (21) by:

V (n2t) − v̄tnr

n
= n( r

α
−1)nr(1− 1

α
)A + nr−1B.

6To be more precise, we need more rigorous mathemati-
cal description that the complementary CDF of Vi belongs
to the normal domain of attraction. However, we omit its
details for brevity, and describe its key behavior in the as-
sumption. We refer the readers to [27] for details.



Note that nr−1B vanished similar to the finite variance case.
Next, again from Random-Time-Change Theorem [5], the

term of “nr(1− 1
α

)A” converges to a α-stable Levy motion, as
n tends to ∞, as summarized in (22). In particular, since
T (n2t)/nr → t

u
from FSLLN, we get

nr(1− 1
α

)A ⇒ Lα(t/u), (23)

where Lα(t) is α-stable Levy motion.
We consider the following two sub-cases:
(i) 1 < r < α. In this case, we observe that n( r

α
−1) tends

to 0 as n → ∞, indicating that C(t) = 0.

(ii) r = α. In this case, n( r
α
−1) = 0, and it follows that

C(t) is a α-stable Levy motion.

(iii) r > α. In this case, n( r
α
−1) is increasing in n, i.e.,

there does not exist a converging process C(t). In other
words, the model here is not appropriate to study this
case, and different methods are needed.

We conclude our characterization in this subsection with
the following remark on the limiting processes:
1) When the sample paths of converging stochastic pro-

cesses (e.g., Brownian motion in Regime I, or C(t) = 0
in some cases of Regime II(r)) have continuous sample
paths, it is sufficient to consider a standard Skorohod J1

topology to discuss all notions of convergence.
2) In the case when r = α of Regime II(r), stable Levy

motion does not have continuous sample path, i.e., there
are jumps in the sample path. To overcome this difficulty,
we need to use a weaker topology, called Skorohod M1

topology. Another technical difficulty we overcame in
Regime II(r) is such an enlargement of topological spaces
to establish the convergence.

4.3.3 Engineering Implications
We now discuss engineering implications based on Theo-

rem 3. Different from Regime I, except for the special case
of C(t) = D(t) = 0, the limiting workload process now does
not admit a closed form. Fortunately, it is possible to study
the asymptotic tail behavior based on the stationary dis-
tribution of α-stable Levy motion, based on which we next
study study the impact of transmission durations on the tail
behavior of workload process.

(1) C(t) = D(t) = 0.

In this case, it is clear that w? is RBMw∗(−b,
P

l∈L(ηlσ
a
l )2),

where its average total workload is simply
P

l∈L(ηlσ
a
l )2)/2b.

That is, when the transmission duration is large and the va-
cation duration has a “light” tail, the delay performance is
affected only by the heavy traffic condition and the variabil-
ity of the arrival process. Thus, this regime is not appro-
priate for investigating different delay properties depending
on average transmission and vacations durations as well as
their variability.

(2) C(t) = Lα(t/u) and/or D(t) = Lα(t/u).

In contrast to the earlier case when C(t) and D(t) vanish,
this case reveals much more interesting implications that
larger transmission durations leads to larger delays, which
is intuitive since schedules are less frequently updated for
larger transmission durations.

In this case, Theorem 3 reveals that w?(t) is the reflection
mapped process of the sum of a Brownian motion and a
stable Levy motion, where a closed form solution for the
stationary distribution is often unknown. Fortunately, the
tail behavior of its stationary distribution offers an attractive
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Figure 3: (a) Impact of the order of transmission dura-

tions on tail behavior. (b) Power-law of tail behavior.

structure. Specifically, we study the tail probability of the
workload process w?(t), i.e., for a given x ≥ 0,

lim
t→∞

P{w?(t) ≥ x}. (24)

The stationary distribution corresponding to a Brownian
motion has a light tail, i.e., its tail probability decays expo-
nentially. In sharp contrast, that corresponding to a stable
Levy motion has a “heavy” tail, its tail probability decays
in a power law manner. Therefore, for large x, the Levy
motion part dominates in the large delay regime.

It is known that when the drift (i.e., −b) is negative, there
exists a stationary distribution, and the tail asymptotics for
the stationary distribution of some process Z(t) = x0 + θt+
Lα(t) follows (where x0 is the starting point and θ < 0 is
the drift in standard notation [27]): for large x,

lim
t→∞

P{Z(t) ≥ x} = H(x),

where

H(x) =

(

1
Γ(2−α)xα−1 − 1

Γ(3−2α)x2(α−1) , 1 < α < 2, α 6= 3
2
,

1√
πx1/2 − 1

2
√

πx3/2 , α = 3
2
.

In the special case when α = 3/2, H(x) = 2exΨc(
√

2x),
where Ψc is the standard normal complementary CDF.

As a numerical illustration, consider the case when u = 1,
and an arrival vector and a network, such that µ = 1 (recall
that µ = η ·λ and η is determined by the considered network
and the arrival vector λ). Figure 3(a) shows the tail behavior
for 1000 < x < 10000 and two values of α = 1.3, 1.5. It
can be seen that the tail probability follows a power-law
and decays slowly. Note that larger r leads to a smaller
transmission duration which in turn results in a“lighter” tail
behavior, since the system is updated with new schedules
more frequently.

Then, a natural question would be how the tail behavior
generally decays with r. To get a more concrete sense, in Fig-
ure 3(b), we fix x = 2000, and vary α (equal to r), ranging
from 1.2 to 1.8. This example examines the impact of r (the
order of transmission duration) on the delay performance,
measured by the tail probability. For a large fixed n, note
that the increase of order r leads to the exponential decrease
of transmission durations, since E[Ui] = n(2−r)u. Observe
that the increase of r results in an exponential decrease in
the tail probability (y-axis is log-scaled), indicating that the
tail probability scales linearly with transmission durations in
this regime. This was also observed in Regime I, where we
extended the earlier results based on Lyapunov bounds, un-
der a regime with large transmission durations, for arbitrary
network topologies.

In a nutshell, in the case with C(t) = Lα(t/u) and/or
D(t) = Lα(t/u), the Levy motion part in the limiting work-



load process dominates in the large delay regime, and the
tail probability of the stationary distribution of the delay
decays in a power law manner. Accordingly, the average
delay can be significant and even grow unbounded.

5. CONCLUDING REMARKS AND FUTURE
WORK

The main thrust of this paper is devoted to quantifying
the impact of signaling complexity on delay and through-
put performance of wireless scheduling. Complementary to
previous studies, we advocate the approach of heavy traffic
analysis to shed new light on traditionally challenging issues
in this research area. We model the signaling complexity as
“vacations”and data transmissions as“services,” and charac-
terize the effective throughput and workload/queueing pro-
cesses in heavy traffic regimes. Such heavy traffic analysis
focuses on the cases with bottleneck links and is used to
prove the desirable state space collapse property, which is
substantially simpler than the original model while provid-
ing excellent approximation. The heavy traffic model with
vacations is applicable to a general family of max-weight
based scheduling rule, namely GMW, while explicitly con-
sidering signaling complexity.

In particular, we analyze the delay performance in various
regimes of vacation models which hinges on the durations of
vacation and data transmission. For Regime I where both
vacation and transmission durations are of O(1), we prove
that the workload process at the diffusion scale converges
to a reflected Brownian motion. We also study the impact
of growing network sizes on average workload. For Regime
II(r) where vacation duration is of O(1) and transmission
duration is of order n2−r with 1 < r < 2, we discover
that the diffusion-scaled workload process converges to a
weighted mixture of a reflected Brownian motion and a re-
flected α-stable Levy motion. In this regime, the analysis
reveals that the average delay can be significantly large and
even grow unbounded.

This paper aims to take some initial steps towards the de-
lay analysis of wireless scheduling. Specifically, we focused
on the case where the signaling complexity is finite, corre-
sponding to a fixed network size. A next step is to study
the model where that network size L = L(n), vacation and
transmission durations scale jointly with the diffusion scale
n. This regime is challenging due to the fact that the dimen-
sionality of queue vector process Q(t) = (Ql(t)) also grows.
A key step here will again be the characterization of the
conditions under which state space collapse follows.

Appendix

Proofs of Theorem 2 and Theorem 3
We outline the main steps for proving Theorem 3. The

proof of Theorem 2 follows the same line and is simpler
indeed, with differences described at the end.

Step 1: We first prove that µ = η ·λ. Let S′ ∈ arg maxS∈S η ·
S. Then, we have S′ ∈ arg maxa∈∂Λ η · a, since any a ∈ ∂Λ
is a convex combinations of S ∈ S. Now, from the CRP
condition of λ, λ = arg maxa∈Λ η ·a, implying that µ = η ·λ.

Step 2: We prove that ẑn(t) ⇒ z?(t).

Denote by P n(t) be the amount of workload that could
be served by slot t at the n-th system. When n → ∞,
P n(t)/Un(t) → µ. ) Let Y n(t) , P n(t) − η · Gn(t), which

is the amount of workload service “wasted” by time t during
the transmission phase. Let Zn(t) , W n(t) − Y n(t).

Then, using (8) and V n(t)+Un(t) = t, and adding/subtracting
η · λnt, we get:

Zn(t) = W n(0) + η · F n(t) − P n(t)
= W n(0) + η · (F n(t) − λnt) + η · λnt − µUn(t)
= W n(0) + η · (F n(t) − λnt) + η · λnt

−µt + µV n(t)
= W n(0) + η · (F n(t) − λnt) + η · λnt − η · λt

+µV n(t),

where in the last inequality, we use µ = η · λ.
Taking the diffusion scaling yields that

ẑn(t)= ŵn(0)+η ·(f̂n(t)−λnnt)+nη(λn−λ)t+µv̂n(t). (25)

A key observation is that T (t) is a random process, where

T (t) = max{k ≥ 0 |
Pk

i=1(Vi + Ui) ≤ t}. Observe that

v̂n(t) = V (n2t)/n =
1

n

T (n2t)
X

i=1

(Vi − v) +
1

n
T (n2t)v,

which can be expressed as the sum of the following four
terms:

1

n

T (n2t)
X

i=1

(Vi−v)

| {z }

(a)

− v

n(2−r)u+v

1

n

T (n2t)
X

i=1

(Ui−n(2−r)u)

| {z }

(b)

−

v

n(2−r)u+v

1

n

T (n2t)
X

i=1

(Vi−v)

| {z }

(c)

+
v

n(2−r)u+v

1

n

T (n2t)
X

i=1

(Vi+Ui)

| {z }

(d)

.

(26)

Accordingly, in the diffusion scale limit, we have that

• From (18), (a) ⇒ C(t).

• (b) ⇒ v̄D(t), from (19) and (20).

• (c) vanishes, since (c) ∼ 1

n(2−r) C(t), where 1 < r < 2.

• (d) ⇒ v̄n(r−1)t, since
PT (n2t)

i=1 (Vi + Ui) = n2t.

Then, plugging (26) into (25), and based on A2 in (16),
we conclude that zn(t) ⇒ z?(t). Recall that z?(t) can be
either a Brownian motion or stable Levy motion, depending
on the tail behavior of Vi. In particular, we need to introduce
Skorohod M1 topology to establish the convergence to stable
Levy motions, in order to handle the jumps in the limiting
processes.

It remains to prove the state-space collapse property, which
we turn our attention to next.

Step 3: The state-space collapse (SSC) property is formally
defined as follows: for each T ≥ 0,

||q̂n(t) − ξ × ŵn(t)||T → 0, in probability, (27)

where ||·||T is the uniform norm over the time interval [0, T ].
To prove SSC, we takes the following sub-steps:

(s1) SSC for fluid-scaled processes. We first prove the state-
space collapse property for the fluid-scaled process q̃(t),
i.e., there exists a slot t0 < ∞, such that

|q̃n(t) − ξ × w̃n(t)| = 0, for all t ≥ t0. (28)



(s2) For a fixed T > 0, we divide n2T slots into [nT ] + 1
intervals of length n, and view a diffusion-scaled pro-

cess {q̂n(t) = Qn(n2t)
n

, t ∈ [0, T ]} as a concatenation of
[nT ]+1 fluid scaled processes, where j-th piece of fluid
scaled process starts at slot nj and ends at slot n(j+1).

(s3) Local fluid-limit. As n → ∞, each of these fluid-scaled
processes over a compact interval with length n con-
verge to a deterministic fluid solution which enjoys the
fluid-level SSC in (28).

(s4) Then, at every point t ∈ [0, T ], we approximate q̂n(t)
by one piece of fluid-model solution that satisfies SSC,
leads to SSC at the diffusion-scaled system.

Step 4: Finally, let ŵn = Φ(ẑn). Then, from the continuous
mapping theorem, we have: as n → ∞ and the result at
Step 3 that ẑn ⇒ z?, we have ŵn ⇒ w?. Using all the
above results, the theorem follows.

Modifications for proving Theorem 2.
The proof of Theorem 2 involves only a few minor modi-

fications: (i) set r = α = 2, and (ii) µ̄ = u/(u + v)µ = η · λ,
where λ ∈ u/(u + v)Λ.
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