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Abstract—In this paper, short-term forecast of wind farm
generation is investigated by applying spatio-temporal analysis
to extensive measurement data collected from a large wind
farm where multiple classes of wind turbines are installed.
Specifically, using the data of the wind turbines’ power outputs
recorded across two consecutive years, graph-learning based
spatio-temporal analysis is carried out to characterize the statis-
tical distribution and quantify the level crossing rate of the wind
farm’s aggregate power output. Built on these characterizations,
finite-state Markov chains are constructed for each epoch of
three hours and for each individual month, which accounts
for the diurnal non-stationarity and the seasonality of wind
farm generation. Short-term distributional forecasts and a point
forecast are then derived by using the Markov chains and ramp
trend information. The distributional forecast can be utilized
to study stochastic unit commitment and economic dispatch
problems via a Markovian approach. The developed Markov-
chain-based distributional forecasts are compared with existing
approaches based on high-order autoregressive models and
Markov chains by uniform quantization, and the devised point
forecasts are compared with persistence forecasts and high-order
autoregressive model-based point forecasts. Numerical test results
demonstrate the improved performance of the Markov chains
developed by spatio-temporal analysis over existing approaches.

Index Terms—Short-term wind power forecast, distributional
forecast, point forecast, wind farm, graphical learning, spatio-
temporal analysis, Markov chains.

NOMENCLATURE

t time index of measurement data
m index of wind turbine class and the correspond-

ing meteorological tower (MET)
M number of wind turbine classes within the wind

farm
Cm wind turbine class m

Nt number of measurement data
Nm number of wind turbines in Cm
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Hm MET for Cm

rm wind turbine co-located with Hm in Cm

Wm(t) wind speed measured at Hm

Pi(t) power output of wind turbine i

Um(·) power curve of Cm, which maps Wm(t) to Pi(t),
∀i ∈ Cm

Pag,m(t) aggregate power output of Cm

Pag(t) aggregate power output of the wind farm
Pmax

ag rated capacity of the wind farm
m index of the reference MET
dm(i) ‘distance’ from node i to the root of the minimal

spanning tree of Cm

αm linear regression coefficient for the parent-child
turbine pairs of Cm

βm linear regression coefficient for Wm(t) as an
affine function of Wm(t)

Gpw(·) ‘power curve’ of the wind farm, which maps
Wm(t) to Pag(t)

Γ wind farm generation level
γ wind speed level
fX(·) probability density function (PDF) of X

FX(·) cumulative density function (CDF) of X

LX(·) level crossing rate (LCR) function of X

N standard normal random variable
WN

m (t) Gaussian transformation of Wm(t)
φ regression coefficient of the first-order autore-

gressive (AR(1)) model
ε(t) white noise of the AR(1) model
σε variance of ε(t)
S state space of Markov chain (MC)
Ns number of states in S
Sk state k in S, k∈{1,· · · ,Ns}
τk average duration of state Sk

Pag,k representative generation level of state Sk

Q transition matrix of Markov chain
nij number of transitions from Si to Sj encountered

in the measurement data
Pr(A) probability of an event A
E [X |Y ] conditional expectation of X given Y

argmin argument of the minimum
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I. INTRODUCTION

A critical aspect in meeting the renewable portfolio standard
(RPS) adopted by many states in the U.S. includes the inte-
gration of renewable energy sources, such as wind and solar
[1]. Given the fact that the power outputs of wind turbines
are highly dependent on wind speed, the power generation
of a wind farm varies across multiple timescales of power
system planning and operations. With increasing penetration
into bulk power systems, wind generation has posed significant
challenges for reliable system operations, because of its high
variability and non-dispatchability [2]. Specifically, one key
complication arises in terms of committing and dispatching
conventional generation resources, when the short-term fore-
cast of wind farm generation is not accurate. Currently, wind
generation forecast for an individual wind farm typically has
an error of 15% to 20% [3], in sharp contrast to the case of
load forecast. When the actual wind generation is above the
forecasted value, i.e., more conventional generation capacity
has been committed than needed, it could result in less efficient
set points for thermal units. In some cases, wind generation
may need to be curtailed [4]. On the flip side of the coin, when
the actual wind generation is less than the forecasted value,
costly ancillary services and fast acting reserves have to be
called upon. Therefore, it is imperative to develop accurate
forecast approaches for wind farm generation.

State-of-the-art short-term wind power forecast approaches
include time-series models (e.g., autoregressive models [5],
Kalman filtering [6]), Markov chains [7], [8], and data mining
[9], [10]. A comprehensive literature review on wind power
forecast can be found in [11] and [12]. Time-series models
and data mining-based regression models, while being able
to provide continuous-value wind power forecast, could suffer
from high computational complexity. Compared to other fore-
cast models, finite-state Markov chains strike a good balance
between complexity and modeling accuracy. In particular, the
transition probability matrix of Markov chains, which is used
to provide distributional forecasts and point forecasts, can
be learned from historical data (e.g., by using the maximum
likelihood estimation technique [7]); when new data points
are available online, it is also easy to update the transition
probability matrix. It is worth noting one of state-of-the-art
forecasting approaches is to utilize empirical distributions and
the rich statistical information extracted from historical data
(see [13], [14] and the references therein). Generally, empirical
distribution of wind power data is non-Gaussian [15]. In [16],
the logit transform is carried out as preprocessing, so that such
a bounded time series can be studied by using autoregressive
models in a Gaussian framework. In this paper, finite-state
Markov chains are utilized to model the bounded wind power
time series with a general probability distribution. It is worth
noting that finite-state Markov chains inherently have bounded
support, and the stationary distribution of a Markov chain
can be general. Despite the appealing features of Markov
chains, there is no existing studies to systematically design the
state space of Markov chains for wind power. The proposed
approach in this paper addresses this issue by developing a
general spatio-temporal analysis framework.

In this paper, Markov-chain-based stochastic models for
wind farm generation are developed for different seasons and
for different epochs of the day across the whole year. From
these Markov-chain-based stochastic models, short-term distri-
butional forecasts and point forecasts of wind farm generation
are obtained. The information used for forecasts includes
both historical data and real-time data (the present wind farm
generation). With a forecasting lead time of 10 min (or larger),
these Markov-chain-based forecasts could be utilized for a
variety of power system operation functions. An overview of
the main contributions of this work is presented below.

A. Summary of Main Results and Contributions

One key observation of this study is the wind farm spatial
dynamics, i.e., the power outputs of wind turbines within
the same wind farm can be quite different, even if the wind
turbines are of the same class and physically located close
to each other. The disparity in the power outputs of wind
turbines may be due to the wake effect of wind speed, diverse
terrain conditions, or other environmental effects. Motivated
by this observation, graph-learning based spatial analysis is
carried out to quantify the statistical distribution of wind farm
generation, with rigorous characterization of wind farm spatial
dynamics. Then, time series analysis is applied to quantify
the level crossing rate (LCR) of the wind farm’s aggregate
power output. Finite-state Markov chains are then constructed,
with the state space and transition matrix designed to capture
both the spatial and temporal dynamics of the wind farm’s
aggregate power output. Based on [17], the distributional
forecasts and the point forecasts of wind farm generation
are provided by using the Markov chains and ramp trend
information. In this work, another finding of independent
interest is that the tail probability of wind farm’s aggregate
power output exhibits a ‘power-law’ decay with an exponential
cut-off, where the power-law part has a much heavier tail
than the Gaussian distribution. This indicates that one cannot
simply apply the central limit theorem (CLT) to characterize
the aggregate power output, because of the strong correlation
across the power outputs of wind turbines within a wind farm.

The main contributions of this study are summarized below:
• A general spatio-temporal analysis framework is devel-

oped, in which the spatial and temporal dynamics of
wind farm generation are characterized by analytically
quantifying the statistical distribution and the LCR.

• Built on the results of spatio-temporal analysis, a system-
atic approach for designing the state space of the Markov
chain is introduced.

• By modeling variable wind power as a Markov chain,
stochastic unit commitment and economic dispatch prob-
lems can be studied by using Markovian state-space
approaches instead of scenario-based approaches [18],
[19]. Thus, the complexity induced by exponentially-
growing scenarios of scenario-based approaches can be
mitigated. Therefore, this study is a timely contribution
to the recent efforts on wind generation integration that
involve Markov-chain-based stochastic optimizations.

The rest of the paper is organized as follows. A few critical
observations from the measurement data are first discussed in
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Fig. 1. Power curves for wind turbines from classes C1 and C2.

00:00 Hrs 03:00 Hrs 06:00 Hrs 09:00 Hrs
0

300

600600

900

1200

Time of day

P
ow

er
 o

ut
pu

t (
kW

)

 

 

intervals

turbine r
1

Neighbor of r
1

Turbine further away

Fig. 2. Power outputs of three wind turbines in C1.

Section II. Spatio-temporal analysis and the design of Markov
chains are presented in Section III. Section IV discusses the
proposed Markov-chain-based forecast approach and numeri-
cal examples. Conclusions are provided in Section V.

II. AVAILABLE DATA AND KEY OBSERVATIONS

In this paper, spatio-temporal analysis is carried out for a
large wind farm with a rated capacity of P max

ag =300.5MW.
There are M = 2 classes of wind turbines in this wind farm,
with N1 = 53 and N2 = 221, respectively. The power curves
of the two turbine classes are provided in Fig. 1. For each class
Cm, a meteorological tower (MET) Hm is deployed and co-
located with a wind turbine, denoted by rm. The power outputs
of all wind turbines and the wind speeds measured at all METs
are recorded every 10 minutes for the years 2009 and 2010.
From the measurement data, several key observations can be
made as follows.

A. Spatial Dynamics of Wind Farm

A critical observation from the measurement data is that
the power outputs of wind turbines within the wind farm
can be quite different. Fig. 2 illustrates the power outputs of
three wind turbines in C1. It is clear that the power outputs
are not equal, despite the geographic proximity of r 1 and its
nearest neighbor (the disparity in the power outputs of the
wind turbines belonging to C2 has also been observed; the
plots are not included for the sake of brevity). This disparity
has been largely neglected in the existing literature.

Although the variable power outputs of wind turbines are
not identical, it is reasonable to assume that they follow the
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Fig. 3. Tail probability of the wind farm’s aggregate power output.
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Fig. 4. Empirical distributions of wind farm generation over various 1-hour
intervals of different epochs of the day and different months.

same probability distribution if the wind turbines are of the
same class. A natural question here is whether the CLT, either
the classic CLT or the generalized CLT, can be applied to
characterize the probability distribution of the aggregate power
output of a large number of wind turbines. To this end, the tail
probability distribution of the wind farm’s aggregate power
output is examined and plotted in Fig. 3. As illustrated in
Fig. 3, the tail probability demonstrates a ‘power-law’ decay
with an exponential cut-off and the power-law part has a
much heavier tail than the Gaussian distribution. It is useful
to note that this kind of tail behavior has been observed
in many natural phenomena (e.g., size of forest fires) that
have strong component-wise correlations [20]. Because of the
strong correlation between the power outputs of wind turbines,
particularly from adjacent wind turbines, the classic CLT
cannot be applied to characterize the probability distribution of
the wind farm’s aggregate power output. In fact, even the ‘CLT
under weak dependence’ cannot be directly applied, despite
the fact that the correlation between the power outputs of
wind turbines weakens with the distance between them (the
‘mixing distance’). Hence, the probability distribution of the
wind farm’s aggregate power output cannot be characterized
using the classic CLT; and it may not even be governed by
stable laws [21]. With this insight, the proposed approach
resorts to graphical learning methods to model the dependence
structure in the power outputs of individual wind turbines and
carries out spatio-temporal analysis accordingly.



4 IEEE TRANSACTIONS ON POWER SYSTEMS

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

W
1
 (m/s)

F
W

1

 

 

Empirical
Analytical (Weibull fitted)

Fig. 5. Weibull-fitted CDF (λ=11.37, k=1.54) and empirical CDF of W1

for the 9 AM-noon epoch of January 2009.

B. Diurnal Non-Stationarity and Seasonality

Another key observation, as illustrated in Fig. 4, is the
diurnal non-stationarity and the seasonality of wind farm
generation. Specifically, it is observed that within each three-
hour epoch, the probability distributions of wind farm gen-
eration over three consecutive 1-hour intervals are consistent.
However, these CDFs from different epochs of three hours
and different seasons can be quite different, indicating the
non-staionarity of wind farm generation. Due to the non-
stationary (empirical) distributions of wind farm generation,
the distributional forecasts and point forecasts of wind farm
generation, together with the developed models (Weibull dis-
tributions and Markov chains) used to derive distributional
forecasts, can have quite different parameters for different
months and different epochs. Therefore, it is necessary to
develop forecast models separately for each month and each
epoch (three hours for the wind farm considered here). Further,
when estimating the parameters of Weibull distributions and
Markov chains, relevant historical data, i.e., the historical data
from the same month and the same epoch, can be used.

In what follows, data-driven analysis is carried out to
characterize the spatial and temporal dynamics of the wind
farm’s aggregate power output. The data of the year 2009 is
used in spatio-temporal analysis to guide the design of Markov
chains, and the data of the year 2010 is used to assess the
accuracy of the forecast provided by the proposed Markov-
chain-based approach. Specifically, the 9 AM-noon epoch of
January 2009 is used as an illustrative example in the following
spatio-temporal analysis, since this epoch exhibits the richest
spatio-temporal dynamics, in the sense that the wind farm’s
aggregate power output during this epoch takes values ranging
from 0 to the wind farm’s rated capacity and exhibits the
highest variability over time (quantified by LCR).

C. Weibull Distribution of Wind Speed

In the existing literature, wind speed is usually characterized
using Weibull distributions [22]. In this work, it is observed
from the measurement data that the wind speed Wm at
each MET within the wind farm closely follows a Weibull
distribution during each epoch, the probability density function
(PDF) of which is given by:

fWm(x) =
k

λ

(x

λ

)k−1

exp−(x/λ)k

, ∀x ≥ 0, (1)
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Fig. 6. MST of C1 (with distance to the southwest corner of the wind farm).
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Fig. 7. Power outputs of parent-child turbine pairs of C1 for the 9 AM-noon
epoch of January 2009.

where k is the shape parameter and λ is the scale parameter.
The fitted cumulative density function (CDF) and the empirical
CDF of W1 for the 9 AM-noon epoch of January 2009 are
plotted in Fig. 5. The match between the empirical CDF and
the fitted CDF suggests that the fitted Weibull distribution
with the two parameters k and λ estimated from wind speed
measurements can be utilized to analytical quantify wind
speed dynamics. Under the developed spatio-temporal analysis
framework, the fitted Weibull distributions of wind speed are
also critical to the analytical characterizations of both the
statistical distribution and the LCR of wind farm generation.
The application of the fitted Weibull distributions of wind
speed in the spatial analysis and the temporal analysis will
be discussed in Section III.A and Section III.B, respectively.

III. SPATIO-TEMPORAL ANALYSIS OF WIND FARM

GENERATION

A. Spatial Analysis and Statistical Characterization

A key objective of spatial analysis is to characterize the sta-
tistical distribution of Pag(t). To this end, regression analysis
is applied to the measurement data of each turbine’s power
output, so that Pag(t) could be expressed in terms of wind
speed. Then, the analytical CDF of Pag(t) can be obtained
from the fitted Weibull CDF of wind speed. In what follows,
the key steps of spatial analysis are provided in detail.

Using the geographical information of wind turbine loca-
tions, a minimal spanning tree (MST) with rm as the root node
is constructed for each class Cm by using Prim’s algorithm
[23], as illustrated in Fig. 6. For each wind turbine i in Cm,
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Fig. 8. CDF of Pag(t) for the 9 AM-noon epoch of January 2009.

there exists only one path from rm to i in the MST of Cm.
Define the node which is closest to i along this path as the ‘par-
ent’ node of i. Another key observation from the measurement
data is that an affine relationship exists between the power
outputs of the parent-child turbine pairs for each class, with
the case of C1 illustrated in Fig. 7. Therefore, a coefficient
αm is introduced for Cm, and the linear regression model
Pk(t)=αmPj(t) is used for each parent-child turbine pair (j,k)
in Cm accordingly. Further, define dm(i) as the number of
the nodes (excluding node i) along the path from rm to node
i, then the linear regression model Pi(t)=α

dm(i)
m Prm(t) can

be used for any wind turbine i in Cm. The value of αm

is determined by applying the minimum mean square error
(MMSE) principle to the aggregate power output of Cm, as
follows:

αm = argmin
α

1
Nt

∑
t

(Pag,m(t) −
∑

i∈Cm

αdm(i)Prm(t))2. (2)

Similarly, an affine relationship between the wind speeds
is also observed from the measurement data. For conve-
nience, H1 is chosen as the reference MET, i.e., m=1. Then,
the linear regression models for wind speeds are given by
Wm(t)=βmWm(t), where βm is solved using the MMSE
principle as follows:

βm = argmin
β

1
Nt

∑
t

(Wm(t) − βWm(t))2. (3)

Using Prm(t)=Um(Wm(t)), the aggregate power output of
the wind farm could be characterized as follows:

Pag(t) =
∑
m

Pag,m(t) =
∑
m

∑
i∈Cm

αdm(i)
m Um(βmWm(t))

� Gpw(Wm(t)). (4)

Due to the monotone characteristics of Um(·), Gpw(·) is
monotonically increasing. Therefore, the analytical CDF of
Pag(t) can be obtained from the fitted Weibull distribution of
Wm(t), given by FPag (·)= FWm

(G−1
pw(·)). The analytical CDF

and the empirical CDF of Pag(t) for the considered epoch are
illustrated in Fig. 8.

It is worth noting that the linear regression models with
homogeneous regression coefficients used here are motivated
by the observation from the measurement data. The above
regression analysis could be generalized by applying more

general regression analysis methods. For example, each parent-
child turbine pair can have a different linear regression coef-
ficient or the parent-child turbine pairs can be analyzed by
using different regression models.

B. Temporal Analysis and LCR Quantification

During each epoch, both the wind speed Wm (t) and the
wind farm generation Pag(t) could be regarded as stationary
stochastic processes. The LCR of a stochastic process is for-
mally defined as the number of instances per unit time that the
stochastic process crosses a level in only the positive/negative
direction [24]. Intuitively, LPag (·) quantifies how frequently
Pag(t) transits between different generation levels. It will
be apparent soon that LPag (·), together with the statistical
characterization FPag (·), is critical in designing the state space
representation of the Markov chains used for wind farm
generation forecast.

It is useful to note that due to the discontinuity in FPag (·),
as illustrated in Fig. 8, a smooth Gaussian transformation
for Pag(t) is unattainable. Hence, the LCR of wind speed
is first characterized. In order to quantify LPag (·) analytically,
LWm

(·) is first derived and converted to LPag (·) by using the
mapping defined in (4). To this end, autoregressive analysis is
applied to Wm(t). As argued in [25], autoregressive analysis
preceded by transforming the stationary non-Gaussian process
Wm(t) to a Gaussian process can result in a better fit,
compared with fitting to an autoregressive model directly.
Therefore, Wm(t) is transformed to a standard normal random
variable, given by

WN
m (t) = F−1

N (FWm
(Wm(t))), (5)

A first-order autoregressive (AR(1)) model [26] is then fitted
to WN

m (t):

WN
m (t) = φWN

m (t − 1) + ε(t), (6)

where the white noise term is modeled as a zero-mean
Gaussian random variable ε(t)∼N (0, σ2

ε ). It is worth noting
that the above AR(1) model is not used for short-term wind
speed prediction. Instead, it is used to quantify the LCR of
wind speed. The parameters φ and σε of the above AR(1)
model can be estimated by solving the Yule-Walker equations
[26]. Then, the LCR of W N

m (t) for a specific wind speed level
γ (γ>0) can be calculated using the following steps:

LWN
m

(γ)

=
∫ γ

−∞Pr(WN
m (t)>γ|WN

m (t − 1)=w)fN (w)dw

=
∫ γ

−∞Pr(ε(t)>γ−φw)fN (w)dw

= ∫γ
−∞

(
1 − FN

(
γ − φw

σε

))
fN (w)dw. (7)

Then, LWm
(·) can be obtained from LWN

m
(·) using the inverse

mapping of the strictly increasing function defined in (5).
Further, using the monotonically increasing function defined
in (4), the LCR of Pag(t) for a specific wind farm generation
level Γ (Γ∈(0,P max

ag ]) is given by:

LPag(t)(Γ) = LWN
m

(F−1
N (FWm

(G−1
pw(Γ)))). (8)
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Fig. 9. LCR of Pag(t) for the 9 AM-noon epoch of January 2009.

The procedure presented above completes the characterization
of the analytical LCR of Pag(t) for an arbitrary epoch. The
analytical LCR and the empirical LCR of Pag(t) for the 9
AM-noon epoch of January 2009 are illustrated in Fig. 9.

C. Markov Chain Model for Spatio-temporal Wind Power

A critical step in developing the Markov-chain-based fore-
cast approach is to capture the statistical distribution and
the temporal dynamics of Pag(t) during each epoch using a
Markov chain with the following characteristics:

• The Markov chain has finite states. Specifically, state Sk

(k=1,· · · ,Ns) corresponds to a specific range of genera-
tion levels [Γk,Γk+1), with Γ1=0 and ΓNs+1=Pmax

ag .
• The Markov chain is discrete-time and of order 1.

The above characteristics are adopted to make the Markov
chains practical for forecasting applications, so that forecast
is made based on the most recent 10-min data only.

The objective of the Markov chain design is to determine the
generation levels Γk (k=1,· · · ,Ns +1) that defines the states,
the transition matrix Q, and the representative generation level
Pag,k for each state k. The procedure developed in [24] is
utilized to design the state space. First, define τk as the average
duration for which Pag(t) stays in Sk, given by:

τk =
FPag (Γk+1) − FPag (Γk)
LPag(Γk+1) + LPag (Γk)

, (9)

where FPag (·) is the analytical CDF of Pag(t) that was
characterized in spatial analysis, and LPag (·) is the analytical
LCR of Pag(t) derived in temporal analysis. Note that τk plays
a critical role in the Markov chain model and determines how
well the stochastic process Pag(t) is captured:

• A smaller value of τk suggests that Pag(t) is more likely
to switch out of the state Sk within a 10-min slot,
i.e., non-adjacent transitions are more likely to occur,
and hence the transitional behaviors of Pag(t) are not
sufficiently captured by the discrete-time Markov chain.

• If the values of τk (k=1,· · · ,Ns) are too large, there
would be fewer states, indicating that the quantization
by the Markov chain is too crude, and the corresponding
forecast would be less accurate.

Therefore, a key objective of state space design is to make each
of τk (k=1,· · · ,Ns) fall into a reasonable range [24]. How-
ever, it is challenging to achieve this design goal, especially
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Fig. 10. Boundaries and average duration for each state of the Markov chain
for the 9 AM-noon epoch of January 2009.
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Fig. 11. Transition matrix (a) by spatio-temporal analysis (b) by uniform
quantization, for the 9 AM-noon epoch of January 2009.

when the closed-form expressions of FPag (·) and LPag (·) are
unattainable. A practical solution adopted here is to introduce
a constant τ and find the Ns−1 variables {Γ2,Γ3,· · · ,ΓNs} by
solving (9) numerically with τk=τ , ∀k∈{1,· · · ,Ns−1}. Once
the state space S is designed, the transition probabilities can be
estimated following the approach proposed in [7]. Specifically,
the probability of a transition from S i to Sj is given by

Qi,j =
nij∑Ns

k=1 nik

, i, j ∈ {1, · · · , Ns}, (10)

The representative generation level for each state Sk, k∈{1,
· · · , Ns}, is determined using the MMSE principle, given by
(the time index of Pag(t) is dropped for simplicity):

Pag,k = argmin
Pk

E
[
(Pk − Pag)2|Pag ∈ [Γk, Γk+1)

]
, (11)

Then, the representative generation level is given by:

Pag,k =
∫Γk+1
Γk

xfPag (x)dx

FPag (Γk+1) − FPag (Γk)
. (12)

The above procedure is applied to the 9 AM-noon epoch
of January 2009, by choosing τ=2 min. The boundaries for
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Fig. 12. Offline spatio-temporal analysis (carried out for each epoch and each month by using historical measurement data).

each state are illustrated in Fig. 10(a), and the corresponding
transition probabilities are plotted in Fig. 11(a). In [7], [8],
the Markov chain for wind power (not in the context of
wind farm generation) is obtained by uniform quantization. By
choosing Γk+1=P max

ag k/Ns, ∀k∈{1,· · · ,Ns−1}, the resultant
state space, denoted by Sunif, is compared with S. From
Fig. 10(b), it is clear that higher values of τk are achieved for
most of the states in S. Hence, fewer non-adjacent transitions
are incurred by S, as can be seen from Fig. 11.

IV. MARKOV-CHAIN-BASED SHORT-TERM FORECAST OF

WIND FARM GENERATION

As illustrated in Fig. 12 and Fig. 13, the proposed approach
for short-term wind farm generation forecasting consists of
two major steps: offline spatio-temporal analysis and online
forecasting. These two steps utilize two types of information
to provide both distributional forecasts and points forecasts.
Specifically, in offline spatio-temporal analysis, the procedures
presented in Section III are carried out on historical data of
turbines’ power output and wind speed, for each epoch and
each month, to build multiple Markov chains by capturing the
statistical characteristics from the historical data. It is worth
noting that Weibull parameter estimation is part of spatio-
temporal analysis. The inputs to the spatial analysis sub-step
are the wind farm’s geographical information and historical
data of each wind turbine’s power output. Historical data of
wind turbines’ power output and wind speed is used by the
temporal analysis sub-step. In online forecasting, the Markov
chains obtained are applied to the real-time measurement of
wind farm generation to provide both distributional forecasts
and point forecasts. Specifically, the transition probabilities of
Markov chains determine the conditional probability distri-
bution of future wind power P̂ag(t + 1), i.e., the probability
distribution of P̂ag(t + 1) conditioned on the real-time wind
power measurement Pag(t).

In what follows, short-term distribution forecasts and point
forecasts are first derived by using the three inputs to the
online forecasting step: 1) the Markov chain developed for
the present epoch and month, 2) the wind farm’s present
aggregate power output Pag(t) at time t, and 3) short-term
complementary information that can be utilized to enhance
forecasting (e.g., ramp trend information). Then, the developed
forecasting methods, with the parameters of the Markov chain
models computed by using 2009 measurement data, are tested

Finite-state Markov 
chain for the present 

epoch and month

Wind farm’s present 
generation  Pag( )agP t

Short-term 
complementary 

information
(ramp trend)

Short-term forecast

Wind farm’s future 
generation  Pag123( )ˆ 1agP t +

Fig. 13. Online short-term forecasting.

on the corresponding 2010 measurement data. For example,
the forecasting method with the Markov chain developed based
on the measurement data in the 9 AM-noon epochs of January
2009 will be applied to the measurement data in the 9 AM-
noon epochs of January 2010 only.

A. Short-term Distributional Forecasts and Point Forecasts

To derive a short-term forecast by using the Markov chain,
it is worth noting that some complementary information can
be utilized. One such complementary information is the ramp
trend of wind farm generation. It is observed from available
data that wind farm generation usually increases or decreases
for several consecutive time-slots. Therefore, the ramp trend
can be used to “steer” the transition of the Markov chain.

1) Distributional Forecasts: Given the current 10-min wind
farm generation data Pag(t), the state of the Markov chain at
time t, denoted by S(t), is determined by searching for a
state k0 so that Pag(t)∈[Γk0 ,Γk0+1). Thus, S(t+1) and hence
Pag(t + 1)=Pag,S(t+1) are random variables that depend on
the transition matrix Q, S(t) and R(t). Further, let R(t)=−1
denote a decreasing trend, and R(t)=1 for the non-decreasing
case. Then, the distributional forecast is given by

Pr(Pag(t + 1) = Pag,j |S(t), R(t)) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Qk0,j

Ns∑
k≥k0

Qk0,k

, if R(t) = 1 and j ≥ k0

Qk0,j

k0−1∑
k=1

Qk0,k

, if R(t) = −1 and j < k0

0, otherwise.

(13)
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2) Point Forecasts: From the above distributional forecast,
a point forecast can be derived by using the MMSE principle:

P̂ag(t + 1) = argmin
Pag

E
[
(Pag − Pag,S(t+1))2|S(t), R(t)

]
(14)

Then, the solution to the above problem is given by:

P̂ag(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ns∑
k≥k0

Pag,kQk0,k

Ns∑
k≥k0

Qk0,k

, if R(t) = 1

k0−1∑
k=1

Pag,kQk0,k

k0−1∑
k=1

Qk0,k

, if R(t) = −1

(15)

which is exactly the mean value of the Markov chain condi-
tioned on the currently observed state and the ramp trend.

B. Numerical Examples

1) Distributional Forecasts: The continuous rank proba-
bility score (CRPS) is utilized to quantitatively assess the
performance of Markov-chain-based distributional forecasts,
given by:

CRPS =
1

Nt

∑
t

∫ Pmax
ag

0

(
F̂ (x) − H(x − Pag(t))

)2

dx,

(16)
where Nt is the total number of data points, F̂ (x) is the CDF
obtained by using the Markov-chain-based distributional fore-
cast, and H(x− Pag(t) is the unit step function, which takes
value 0 when x<Pag(t) and takes value 1 when x≥Pag(t).
Basically, a higher CRPS value suggests that the distributional
forecast is less accurate. By using the above definition, the
CRPS value of the Markov-chain-based distributional forecast
over all the 52560 (365*24*6) data points of the year 2010
is calculated. The CRPS of the Markov-chain-based distri-
butional forecast over the data points of the year 2010 is
provided in Table. I. Since one main objective of this work
is to develop Markov-chain-based distributional forecasting
models, the Markov chain developed by the existing approach
[7], [8] (uniform quantization) is used as a benchmark. The
Markov chain developed by the proposed spatio-temporal
analysis with the design parameter τ=2 (column 3 of Table. I)
has a CRPS that is 13% less than that of the benchmark
Markov chain that has the same number of states designed
by uniform quantization (column 2 of Table. I). By reducing
the design parameter τ to 1, the forecasting performance of
the Markov chain developed by the proposed spatio-temporal
analysis (column 4 of Table. I) is further improved.

The proposed Markov-chain-based distributional forecasts
are also compared with the distributional forecasts based on
high-order AR models. Here, two high-order AR models
with a truncated Gaussian distribution and a truncated log-
normal distribution are considered. The high-order AR model
with a Gaussian distribution is adopted from [5] by con-
sidering one regime, and then the support of the Gaussian
distribution is truncated into [0, P max

ag ]. The procedure for
building AR models with truncated log-normal distributions

Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec
2

7
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17

22

Month

C
R

P
S

 (
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W
)

Fig. 14. Statistics of CRPS over all months of the year 2010.

TABLE I
CRPS OF DISTRIBUTIONAL FORECASTS OVER THE TESTING DATA POINTS

OF THE YEAR 2010.

MC MC MC AR AR
(unif.) (τ=2) (τ=1) (Gaussian) (Log-normal)

CRPS 7.14 MW 6.27 MW 6.09 MW 6.89 MW 6.54 MW

can be found in [16]. Specifically, the order of the AR
models are determined by using the partial autocorrelation
functions of the wind power time series [27]. Then, the
recursive least square algorithm [27] is applied to calculate
the regressive coefficients, the predicted wind power P̂ag(t)
(the point forecast of the AR model), and the variance of
innovation C. Finally, by using P̂ag(t) as the mean and C
as the variance of a Gaussian distribution or a log-normal
distribution which is truncated into [0, P max

ag ], the wind power
distributional forecasts can be obtained. The CRPS values of
the distributional forecasts based on high-order AR models are
calculated by using (16), and are shown in Table I. It can be
seen from Table I that the Markov-chain-based distributional
forecasts with the design parameter τ=1 (column 4 of Table I)
achieves a CRPS value that is 11.6% and 6.9% lower than
those of the AR-based distributional forecasts (column 5
and column 6 of Table I), respectively. The reason for this
improvement of Markov-chain-based distributional forecast
is that the conditional probability distributions provided by
Markov chains do not assume the shape of the distribution
(and thus can be regarded as “non-parametric” distributional
forecasts in literature [13]). Therefore, by using the transition
probability estimated from historical data, Markov chains can
provide more accurate distributional forecasts than those based
on assumed parametric distributions (e.g., Gaussian, β and
log-normal distributions). The superiority of non-parametric
distributional forecasts over parametric ones is also discussed
in [13] and references therein. In summary, the improvement
of the developed Markov-chain-based approach over other
approaches can be attributed to the rigorous design of Markov
chains and transition probabilities, which in turn utilizes the
analytical results from spatio-temporal analysis.

To further examine the performance of the developed
Markov-chain-based distributional forecasting method over
different epochs and different month, the median and per-
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Fig. 15. Statistics of CRPS over all 8 epochs of the year 2010.

centiles of the CRPS values over the data points for each
month or each epoch is computed. In the box plots of Fig. 14
and Fig. 15, the central bar in a box represents the median
value of the CRPS values over all data points that fall into
a specific epoch or a specific month. The top edge and
bottom edge of a box represent the 25th and 75th percentiles,
respectively. The top bar and bottom bar correspond to the
extremes calculated from 1.5 interquartile ranges. It is ob-
served from Fig. 15 that the medians and standard deviations
of the CRPS values are a little higher during afternoon-night
epochs. Fig. 14 shows that the medians of the CRPS values
have little variability across different months, and the standard
deviations of the CRPS values are slightly higher across the
winter season. Another key observation from the results of
numerical experiments is that the CRPS of the Markov-chain-
based distributional forecast over a realized data points Pag(t)
is highly dependent on the ramp rate of Pag(t) at time t.
Here, the ramp rate of Pag(t) is defined as the absolute value
of the change in the wind farm generation in a 10-min slot.
For example, the ramp rate of Pag(t) at time t is given by
|Pag(t)−Pag(t−1)|. By using the data points of the year 2010,
the corresponding pairs of ramp rates and CRPS values are
plotted in Fig. 16. It is observed that the ramp rates of Pag(t)
and the CRPS values of the Markov-chain-based distributional
forecast over a realized data points Pag(t) follows a positive
correlation. The above observation also explains the ‘phase
transition’ from the noon-3 PM epoch to the 3-6 PM in
Fig. 15, i.e., the increased wind ramp caused by the sudden
change in diurnal heating/vertical mixing conditions [28]. In
summary, the statistics (especially the median value) of the
CRPS values vary slightly differently over different months
and epochs, which suggests that the developed Markov-chain-
based distributional forecasting methods deliver consistent
forecasting performance across the entire year.

Further, three episodes of prediction intervals are plotted
to better illustrate the developed Markov-chain-based distri-
butional forecasts. According to the above observation, three
representative time periods are chosen: 1) the 0-3 AM epoch
of January 23rd, 2) the 3-6 PM epoch of January 16th, and 3)
the 3-6 PM epoch of April 16th. The first period in January
23rd is chosen since it has much higher average ramp rate than
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Fig. 16. Correlation between the ramp rates of Pag(t) and the CRPS values
of distributional forecast.
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Fig. 17. 10-min distributional forecasts on January 23rd, 2010.
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Fig. 18. 10-min distributional forecasts on January 16th, 2010.

other January days, and the 0-3 AM epoch experienced a large
down-ramp from 75% to 25% of the rated capacity. The second
period is chosen because January and the 3-6 PM epoch have
the highest median CRPS value (i.e., least accurate forecasts),
and the CRPS value of January 16th is mostly close to the
corresponding median value. The third period is chosen due
to similar reasons as the second period, except that April is the
month that has the least CRPS values. Fig. 17-19 illustrate the
90% prediction intervals obtained by the developed Markov-
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Fig. 19. 10-min distributional forecasts on April 16th, 2010.

TABLE II
10-MIN POINT FORECAST ERROR OF WIND FARM GENERATION (ALL TEST

DATA OF THE YEAR 2010 IS USED).

Error Persistence MC MC MC AR
(unif) (τ=2) (τ=1)

MAE 6.98 MW 7.14 MW 6.83 MW 6.62 MW 6.38 MW
MAPE 7.31 % 7.48 % 7.15 % 6.93 % 6.68 %
RMSE 11.18 MW 11.58 MW 10.89 MW 10.56 MW 10.25 MW

TABLE III
10-MIN POINT FORECAST ERROR OF WIND FARM GENERATION OVER THE

PERIOD SHOWN IN FIG. 17.

Error Persistence MC MC MC AR(unif) (τ=2) (τ=1)
MAE 13.26 MW 13.83 MW 9.97 MW 9.59 MW 9.39 MW
MAPE 11.61 % 12.1 % 8.73 % 8.4 % 8.22 %
RMSE 15.81 MW 16.26 MW 12.81 MW 12.23 MW 11.94 MW

TABLE IV
10-MIN POINT FORECAST ERROR OF WIND FARM GENERATION OVER THE

PERIOD SHOWN IN FIG. 18.

Error Persistence MC MC MC AR
(unif) (τ=2) (τ=1)

MAE 4.6 MW 4.71 MW 4.54 MW 4.32 MW 4.28 MW
MAPE 6.28 % 6.43 % 6.2 % 5.9 % 5.84 %
RMSE 6.16 MW 6.32 MW 6.09 MW 5.91 MW 5.86 MW

TABLE V
10-MIN POINT FORECAST ERROR OF WIND FARM GENERATION OVER THE

PERIOD SHOWN IN FIG. 19.

Error Persistence MC MC MC AR
(unif) (τ=2) (τ=1)

MAE 6.02 MW 6.31 MW 4.95 MW 4.81 MW 4.73 MW
MAPE 4.64 % 4.86 % 3.82 % 3.71 % 3.65 %
RMSE 6.86 MW 7.17 MW 5.73 MW 5.41 MW 5.23 MW

chain-based distributional forecasts. It is observed at for all
three representative periods, the realized wind farm generation
reasonably lies in the 90% prediction intervals.

2) Point Forecasts: By comparing the point forecast P̂ag(t)
with the actual wind farm generation Pag(t), forecast errors
are quantified by mean absolute error (MAE), defined as

MAE =
1

Nt

∑
t
|Pag(t) − P̂ag(t)|, (17)
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Fig. 20. Statistics of absolute error over all months of the year 2010.
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Fig. 21. Statistics of absolute error over all 8 epochs of the year 2010.

mean absolute percentage error (MAPE), defined as

MAPE =
∑

t |Pag(t) − P̂ag(t)|∑
t Pag(t)

, (18)

and root mean square error (RMSE), defined as

RMSE =

√∑
t |Pag(t) − P̂ag(t)|2

Nt
. (19)

Besides AR models, two point forecast approaches are used
as benchmark:

• persistence forecast [29]: P̂ag(t + 1)=Pag(t);
• forecast by Markov Chain with uniform quantization.

The proposed Markov-chain based forecast method is com-
pared with several state-of-the-art approaches. Specifically, the
wind power data used for forecast is first mapped to the state
space designed by following the procedure in Section III-C.
Then, point forecasts are obtained by using the representative
generation levels of corresponding states. The test results by
using the data for the year 2010 and the three selected epochs
are provided in Table II-V, respectively. It is observed that
the Markov chains based on uniform quantization give less
accurate forecast than persistence forecast. This can be at-
tributed to the uniform quantization not considering the spatio-
temporal dynamics of wind farm generation. Also note that the
proposed Markov-chain-based forecast approach has improved
accuracy compared to the persistence forecast approach, and
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Fig. 22. Number of states and the forecast error of Markov chains at various
τ for the January 9 AM-noon epoch).

comparable accuracy to the AR-based approach. Further, the
statistics of the absolute error of the Markov-chain-based
point forecasts over different months and different epochs are
illustrated in Fig. 20 and Fig. 21, respectively. It can be seen
from Fig. 20 and Fig. 21 that the developed Markov-chain-
based point forecasting methods perform consistently across
the entire year.

Another key observation from Table IV and Table II is
that smaller values of τ leads to higher forecast accuracy of
the Markov chains, at the cost of higher complexity of the
Markov chains (in terms of the number of states). The trade-
off between the forecast accuracy and the complexity of the
Markov chain for the 9 AM-noon epoch of January 2010 is
illustrated in Fig. 22.

From the results presented above, it can be seen that the pro-
posed distributional forecast approach outperforms the high-
order AR-based distributional forecasts with Gaussian and
log-normal distributions. This is because the proposed spatio-
temporal analysis extracts from historical data the rich statis-
tical information of wind farm generation, and accordingly
the corresponding Markov chain models can provide more
accurate distributional forecasts than AR-based models with
assumed Gaussian and log-normal distributions. Further, the
proposed point forecasts have a lightly higher mean absolute
error (MAE) than those of high-order AR-based forecasts.
However, note that one main objective of this study is to de-
velop Markov-chain-based distributional forecasts that can be
used for economic dispatch in the presence of wind generation
uncertainty [18], [19], in which a good balance is needed
between computational complexity and modeling accuracy.
Here, computational complexity involves both the computa-
tional effort for building and utilizing the forecasting models
to provide distributional forecasts and the computational effort
for solving stochastic economic dispatch problems by using
these distributional forecasts. Therefore, compared to AR-
based distributional forecast methods, the developed Markov
chain models are more suitable for stochastic economic dis-
patch, because the computational burden of using continuous

distributions of AR-based forecasts for stochastic economic
dispatch would be significantly higher. Moreover, even though
the computational effort of using AR-based distributional
forecasts can be reduced by applying quantization (i.e., 0-300
MW quantized into 50-70 states for the cases in this study)
and scenario reduction, the quantization error would cause
the quantized AR-based forecasts to be even less accurate
than the proposed Markov-chain-based forecasts. In summary,
the proposed Markov-chain-based distributional forecast ap-
proach achieves higher accuracy than existing approaches, and
the well-balanced complexity and accuracy of Markov chain
models make them an ideal tool to study stochastic economic
dispatch problems.

V. CONCLUSION

A general spatio-temporal analysis framework is developed
for wind farm generation forecast, in which finite-state Markov
chain models are derived. The state space, transition matrix
and representative generation levels of the Markov chains are
optimized by using a systematic approach. The short-term
distributional forecast and point forecast are derived by using
the Markov chains and the ramp trend information. One main
contribution of this study is that the distributional forecast can
be directly integrated into the problems of unit commitment
and economic dispatch with uncertain wind generation, so that
these problems can be studied in a general Markov-chain-
based stochastic optimization framework.

In a related work [18], we are investigating power system
economic dispatch with wind farm generation by utilizing a
realistic test system and the Markov-chain-based distributional
forecasts of wind farm generation. The distributional forecasts
of wind farm generation are integrated into a stochastic pro-
gramming framework of multi-period economic dispatch, so as
to optimize the dispatch decisions over the operating horizon.
The impact of the forecast errors of wind farm generation on
economic dispatch is also studied.
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