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Blind spots in sensor networks, i.e., individual nodes or small groups of nodes isolated from the rest of the
network, are of great concern as they may significantly degrade the network’s ability to collect and process
information. As the operations of many types of sensors in realistic applications rely on short-lifetime power
supplies (e.g., batteries), once they are used up (“off”), replacements become necessary (“on”). This off-and-
on process can lead to blind spots. An issue of both theoretical and practical interest concerns the dynamical
process and the critical behavior associated with the occurrence of blind spots. In particular, there can be
various network topologies, and the off-and-on process can be characterized by the probability that a node
functions normally, or the occupying probability of a node in the network. The question to be addressed in
this paper concerns how the dynamics of blind spots depend on the network topology and on the occupying
probability. For regular, random, and mixed networks, we provide theoretical formulas relating the probability
of blind spots to the occupying probability, from which the critical point for the occurrence of blind spots can be
determined. For scale-free networks, we present a procedure to estimate the critical point. While our theoretical
and numerical analyses are presented in the framework of sensor networks, we expect our results to be generally
applicable to network partitioning issues in other networks, such as the wireless cellular network, the Internet
or transportation networks, where the issue of blind spots may be of concern.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Da

I. INTRODUCTION

Wireless sensor networks have increasingly been deployed
in various applications that are important for improving the
quality of life in a modern society [1]. Examples include
monitoring and collection of information on objects ranging
from plankton colonies [2], endangered species [3], soil and
air contaminants [4] to traffic flow [5], biomedical subjects
[6], building and bridges [7], etc. Sensor networks also find
critical applications in homeland defense such as detection of
chemical or biological agents and pattern recognition [1]. In
many applications, sensors are powered by sources that have
relatively short lifetime, such as batteries, for which routine
replacement or recharging is necessary [8]. Because of this
requirement, at any given time a number of sensors in the net-
work are not operational, or are in an “off” state, and another
group of sensors are turned back on. The off-and-on process
can be characterized by the probability that a node functions
normally, or the occupying probability of a node in the net-
work. Intuitively, if the number of “off” sensors is small, we
expect the network to remain fully connected, which is de-
sired. However, as the number becomes large, situations can
arise where some of the sensors in the network, while still
functional, become isolated from other sensors. These are the
blind spots[9, 10]. The occurrence of blind spots can be a
serious issue of concern, as they may result in loss or inter-
ruption of critical data or information.

There is vast engineering literature on sensor networks, but
results on blind-spot dynamics are scarce. In particular, there
has been no study of the interplay between the dynamics and
the network architecture. Our point is that this dynamics prob-
lem can be addressed by using tools from statistical physics,
e.g., percolation theory [11]. A network is integrable and
functional if a substantial fraction of nodes are connected.

Theoretically, the problem can be treated in the framework of
percolation where one can ask, for instance, under what condi-
tions a global spanning cluster of nodes, which contains a con-
siderable fraction of the active nodes, can be formed [12–15].
Intuitively, one may expect that networks with a stronger abil-
ity to form spanning clusters should be more capable of “ab-
sorbing” isolated nodes and, hence, such networks should be
more robust against the occurrence of blind spots. In the lan-
guage of percolation, this is to say that networks with smaller
percolation thresholds should be more easily to be fully con-
nected as the occupying probability is increased through the
threshold. However, our recent brief work on blind-spot dy-
namics in scale-free networks [10] results in a finding that is
contrary to the intuitive thinking: blind spots are more proba-
ble in networks that are more susceptible to percolation for the
same type of networks [10]. Retrospectively, this can be un-
derstood by noting that, the percolation threshold is generally
smaller for relatively more heterogeneous networks, when the
average degree is fixed, there is also a higher probability for
these networks to possess more small-degree nodes, making
more difficult a full connection

The sensor networks, one of the typical networks in which
the nodes may have the on-off process, are not necessarily the
scale-free networks. Due to real constraints, the real network
could be random or regular, which have a homogeneous de-
gree distribution. In this paper, we shall systematically study
the occurrence of the blind spots on several different types of
sensor networks. Since blind spots are more susceptible to
larger networks, special interest is that how the critical con-
dition of the occurrence of blind spots depend on the net-
work size, thus the scaling relations to the network size for
these networks are of the main concern. Specifically, we first
demonstrate that from the statistical point of view, the blind
spot dynamics (evolvement in time) can be equivalently de-



2

scribed by the occupying probability, i.e., the probability that
a node is “on” or “off” for a static case, which can be studied
via the ensemble statistics. Therefore the main issue of inter-
est concerns how the number of blind spots depends on the
occupying probability for any given network architecture, and
what are the scaling laws between the critical values for the
occurrence of blind spots and the network size, and how they
depend on the network structures. We shall adopt the basic
analytic scheme introduced in [10] and develop more detailed
analysis for four different types of sensor networks: regular,
random, mixed, and heterogeneous. Based on a few first prin-
ciple assumptions, the degree distribution for each type of sen-
sor network is first justified and the scaling relations are ob-
tained. For the first three types of networks, explicit formulas
can be obtained for the critical value of the occupying proba-
bility, below which blind spots are likely. Numerical simula-
tions are carried out and compared with the theories. For het-
erogeneous networks, a computational procedure is derived,
which allows the critical occupying probability to be deter-
mined implicitly. These results should be useful not only for
designing specific sensor networks, but also for deriving con-
trol strategies to restore the networks from catastrophic events
as in the aftermath of a large-scale attack.

In Sec. II, we outline our theoretical approach to the blind-
spot problem. In Sec. III, we derive analytic formulas for
critical occupying probability for different types of networks
and provide numerical confirmation. Conclusions and discus-
sions are presented in Sec. IV.

II. THEORETICAL APPROACH TO BLIND SPOTS

Because of power limitation, physically a sensor can com-
municate with sensors within a certain range only. On av-
erage, it is convenient to introduce a communication radius
rc to model this effect: there can be a link between any pair
of sensors (nodes) only if their distance is smaller thanrc.
Topologically, sensors can be regarded as being distributed in
a two-dimensional region. A sensor network can be defined
naturally based on these considerations.

A. On-off processes

The process of battery drainage and replacement is equiva-
lent to an on-off process, which can be modeled statistically.
For a large network, in the long term the on-off process, which
is highly dynamic, can be treated in the framework of percola-
tion theory. Letnon denote the number of on-nodes andnoff

be the number of off-nodes, which satisfynon + noff = N .
At each time step, there is a finite probabilityπ1 for an on-
node to be off, due to the battery drainage or sensor failure.
Likewise, every off-node has probabilityπ2 to be turned on,
due to recharge, repair, or sensor replacement, etc. We have

∆non = −nonπ1 + noffπ2.

In the continuous-time limit, this becomes

dnon

dt
= −nonπ1 + noffπ2. (1)

Usingnon +noff = N and the initial conditionnon(0) = N ,
Eq. (1) can be solved explicitly as

non(t) =
N

π1 + π2
[π2 + π1e

−(π1+π2)t]. (2)

Letting q = non/N , whereq is the occupying probability in
the language of percolation, we obtain

q(t) =
1

π1 + π2
[π2 + π1e

−(π1+π2)t]. (3)

As t → ∞, we haveq(t) → π2/(π1 + π2). In this way, the
on-off dynamical process is completely equivalent to a per-
colation problem. Given a sensor network, solutions to the
on-off problem can be obtained by solving the corresponding
percolating dynamics. For example, suppose a network has a
percolation thresholdqth. For q > qth, there exists a span-
ning cluster and the network is globally connected and func-
tional, while it is disintegrated and loses its global function
for q < qth. The thresholdqth in general depends on net-
work details such as its size and degree distribution. Say we
have determined the thresholdqth. Given a particular value of
π1 (which usually depends on the sensors), it is necessary to
adjustπ2 (through sensor recharging or replacement) to guar-
anteeπ2/(π1 + π2) ≥ qth. That is, the network integrity can
be maintained by increasingπ2 to minimize the likelihood of
losing a spanning cluster.

A special case isπ2 = 0, where sensor batteries are never
replaced. We have

q(t) = e−π1t ≡ e−t/τ , (4)

whereτ = 1/π1 is the characteristic average lifetime of sen-
sor battery.

B. Blind spots

In sensor networks, coverage plays a critical role for field-
ing monitoring and information collecting. An intimately re-
lated issue is the blind spot, where a blind spot is a node or a
cluster of several connected nodes isolated from other parts of
the network. This boils down to the occurrence of blind spots.

To analyze the occurrence and the number of blind spots,
we consider the single-node blind spot. A node havingk
neighbors is isolated if it is on but all its neighbors are off. The
probability of this event isqpk, wherep = 1 − q is the prob-
ability that a node is off. LetN be the network size andP (k)
be the degree distribution [16]. On average,NP (k) nodes
havek neighbors. The total number of single-node blind spots
is n1 =

∑
k qpkNP (k). Near the critical point where blind

spots begin to appear, the probabilities of various multi-node
blind spots are negligible. Approximately the number of blind
spots is given by

ns ≈ n1 =
∑

k

qpkNP (k). (5)
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We see thatns/N depends only on the degree distribution.
For a given degree distribution, there is a scaling law such that
ns = Nf(q). Furthermore, Eq. (5) does not depend on the
detailed construction of the network. That is, for a network
with certain degree distribution, regardless of the ways that it
is generated (e.g., by randomly picking up a pair of nodes and
connecting them, or by some preferential-attachment rule, or
by connecting nearest spatial neighbors), it will have the same
functionf(q) and the same scaling laws near the critical point
qc. This may be interesting, considering that the percolation
threshold is sensitive to fine details such as the degree correla-
tion [17, 18], the degree of clustering [19], ways of embedding
into a Euclidean space [20, 21], etc.

To determine the critical pointqc, we note that for a given
network sizeN , blind spots can practically occur if〈ns〉 > 1,
while they are unlikely for〈ns〉 < 1, where 〈ns〉 is the
ensemble-averaged value ofns. Thus we can conveniently
choosens = 1 to be the criterion for determiningqc, which
can be solved as a function of network sizeN and some
network parameterµ characterizing the degree distribution:
qc = qc(N, µ). Knowing qc, by solving Eq. (3) withq = qc,
we can determine the critical timetc when the first blind spot
occurs, provided that the network undergoes an on-off pro-
cess.

III. SOLUTIONS TO BLIND-SPOT PROBLEM FOR
DIFFERENT NETWORK TOPOLOGIES

A. Regular sensor networks

Imagine that a sensor network is built up according to the
geometry of a regular lattice, where the distances between any
nearest neighboring pairs of sensors are constant. The degree
distribution is thus a delta function:P (k) = 1 if k = m and0
otherwise, wherem is the number of nearest neighbors. The
number of blind spots is

ns = Nqpm. (6)

As the probabilityp goes to zero,ns/N also approaches zero.
For a given network of sizeN , there exists apc such that
ns < 1 for p < pc. Settingns = c, we have

ns = Nqcp
m
c = c.

As qc is varied, the change ofns is dominated by the factor
pm

c = (1−qc)m. We can thus treatqc as a constant and obtain

pc = (
Nqc

c
)−

1
m ≈ c′N− 1

m , (7)

wherec′ is a constant. To obtain the scaling law fortc, we
substituteqc = 1 − pc into Eq. (3) and noteq(tc) = qc. This
yields

tc = −τ ln qc = −τ ln(1− c′N− 1
m ). (8)

Form = 4, this result reduces to the previous one obtained in
Ref. [9].
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FIG. 1: Critical timetc versus the network sizeN for lattice net-
works. Data points are numerical results form = 12 (squares) and
m = 20 (circles). The parameters areπ1 = 0.01, π2 = 0, and
τ = 100. Each data is averaged over104 realizations. Curves are
from Eq. (8) withc′ = 1.01.

For a given network, starting with all nodes are on, in sim-
ulation the on-off process can be applied and the critical time
tc at which the first blind spot arises can be measured. Figure
1 shows the behavior of the critical time of two regular sen-
sor networks, where the decrease oftc asN goes large can be
seen. The data points are from numerical computation and the
curves are from theory. Both agree well.

B. Random sensor networks

In this case, nodes are distributed randomly within a region
S. Two nodes are connected if their distance is less than the
responding distancerc. Thus nodei is connected with all its
neighbors that are located in a circle of radiusrc centered ati.
We call it theconnecting circle. The degree distribution can be
obtained, as follows. For a given nodei theN−1 other nodes
in the network are distributed randomly inS. One can thus
imagine randomly dropping particles over an areaS and ask
the probability for a particle to fall in the connecting circle of
i. This is basically a point process and the probability is given
by the Poisson distribution

P (k) =
e−kakk

a

k!
,

with parameter

ka = (N − 1)πr2
c/S ≈ Nπr2

c/S.

The average degree is〈k〉 =
∑

k P (k)k = ka, thusP (k) =
e−〈k〉〈k〉k/k!. Substituting the distribution into Eq. (5), we
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obtain

ns =
∑

k

qpkNe−〈k〉
〈k〉k
k!

= Nqe−〈k〉ep〈k〉 = Nqe−q〈k〉.

(9)
Whenp approaches0, ns decays exponentially toNe−〈k〉.

For a given value of〈k〉, when the network sizeN is large
enough, e.g., larger thane〈k〉, blind spots will occur for arbi-
trary small probabilityp that a node is turned off. This comes
from the fact that for the Poisson degree distribution, the prob-
ability that a node has no connection isP (0) = e−〈k〉. For
N > 1/P (0), even if all nodes are on, there still exist blind
spots, i.e., those with no neighbors by the way of network
construction. This property illustrates that, for random place-
ment of sensors, blind spots are almost certain, particularly
when the number of sensors is large. However, whenN is not
so large as compared withe〈k〉, whether blind spots can arise
depends on the value ofq.

AssumingN < e〈k〉, we now obtain the scaling laws forqc

andtc. Settingns = c, we have

ns = Nqce
−qc〈k〉 = c.

Sinceqc varies much more slowly thane−qc〈k〉, the main de-
pendence ofqc uponN comes from the latter term. We can
write the solution as

qc =
1
〈k〉 ln(

Nqc

c
).

Neglecting the slow variation ofqc and absorbing it intoc:
c′ = c/qc, we obtain

qc =
1
〈k〉 ln(N/c′). (10)

From Eq. (3) withq(tc) = qc, we can find the scaling law for
tc:

tc = τ [ln〈k〉 − ln ln(N/c′)]. (11)

Compare to Eq. (8) for regular networks, the critical time
for random sensor networks decreases much faster asN in-
creases.

To construct a numerical model for random sensor net-
works, we can fixrc and S (N is proportional toS). The
average degree is〈k〉 = Nπr2

c/S, which is independent of
N . For convenience, periodic boundary conditions can be as-
sumed.

Since the critical pointpc (or qc) depends on the net-
work size, we focus on the scaling relationpc(N). The
probability that the network formed by all on-nodes under a
given occupying probability is fully connected depends on
N as f [p/pc(N)], wheref(x) may have a universal form
for given degree distribution. Having numerically determined
f [p/pc(N)] for a set ofN values, we can adjust the parameter
pc(N) so that all thef -curves overlap with each other com-
pletely. This way the relationpc(N) can be obtained. Figure 2
(a) shows the dependence off [p/pc(N)] onp/pc(N) for a set
of random sensor networks with different sizes, which indeed
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FIG. 2: (Color online) For random sensor networks with〈k〉 = 20,
(a) universal behavior in the probabilityΦfc of full network connec-
tion versus the normalized occupying probabilityp/pc(N) for seven
different network sizes: 2500, 5625, 10000, 16900, 28900, 40000,
62500, and 90000, where each data point is the result of ensemble
average of 1000 networks, and (b)log pc(N) versuslog N . The
solid curve in (b) is calculated from the theory [Eq. (9)] by setting
ns = 1.
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FIG. 3: Critical timetc versus network sizeN of random sensor
network with〈k〉 ≈ 20. Data points are obtained from the numerical
simulations with parametersπ1 = 0.01 andπ2 = 0 (τ = 100).
Each data is averaged over104 realizations. Solid curve is from Eq.
(11) with c′ = 0.8. Inset: tc versusln ln N . The straight line is for
eye-guiding only.

exhibits a universal form after proper adjustment ofpc(N).
The scaling relationpc(N) is shown in Fig. 2 (b), where sym-
bols are the data ofpc(N) obtained from Fig. 2(a), and the line
is from the theoretical distribution Eq. (9) by settingns = 1.
Both are normalized so that their values forN = 2500 are
unity. Theory and numerical simulations agree quite well.

Figure 3 shows that the critical timetc decreases as the
network size is increased. The solid curve is the theoretical
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prediction from Eq. (11). There is again a good agreement
between numerics and theory.

C. Mixed sensor networks

A mixed network is not strictly a regular lattice, nor is it
completely random. Such a network can be constructed by
using the Gaussian degree distribution:

P (k) =
1√

2πσ2
exp[− (k − 〈k〉)2

2σ2
],

for k ≥ 0, where〈k〉 is the average degree,σ2 is the variance,
which is assumed to be small compared with〈k〉 so that the
summation ofP (k) from −∞ to 0 in the normalization can
be disregarded. Note that whenσ2 approaches to0, the Gaus-
sian distribution limits to delta function:P (k) → δ(k − 〈k〉),
thus the network approaches regular network. While ifσ2 ap-
proaches to〈k〉, the Gaussian distribution approaches to the
Poisson distribution, and the network is effectively a random
sensor network. SubstitutingP (k) into Eq. (5), we have

ns =
∞∑

k=0

Nqpk 1√
2πσ2

e−
(k−〈k〉)2

2σ2

= Nqp〈k〉
1√

2πσ2

∞∑

k=0

pk−〈k〉e−
(k−〈k〉)2

2σ2

= Nqp〈k〉
1√

2πσ2

∞∑

k=0

e(ln p)(k−〈k〉)e−
(k−〈k〉)2

2σ2

= Nqp〈k〉e
σ2(ln p)2

2
1√

2πσ2

∞∑

k=0

e−
(k−〈k〉−σ2 ln p)2

2σ2 .(12)

If the varianceσ2 is small compared with the new mean〈k〉+
σ2 ln(p), the summation in Eq. (12) can be approximated by
a standard Gaussian integral. We obtain

ns = Nqp〈k〉e
σ2(ln p)2

2 . (13)

Notice that asσ2 goes to zero, this equation reduces to Eq.
(6). If σ2 is non-zero but small as compared with the aver-
age degree, the scaling laws forqc andtc can be obtained, as
follows.

First, settingns = c yields

ns = Nqcp
〈k〉
c e

σ2(ln pc)2

2 = c.

Taking logarithm on both sides, we have

σ2(ln pc)2

2
+ 〈k〉 ln pc + ln (Nqc/c) = 0.

Absorbingqc into c′: c′ = c/qc, we have

ln pc = − 1
σ2

(〈k〉 −
√
〈k〉2 − 2σ2 ln(N/c′)),
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FIG. 4: (Color online) For a mixed network with Gaussian degree
distribution,〈k〉 = 20, σ2 = 4, (a) the probabilityΦfc of full con-
nection versus the normalized occupying probabilityp/pc(N) for
seven different network sizes: 2500, 5625, 10000, 16900, 28900,
40000, and 250000, where each data point is the result of ensem-
ble average of 1000 network realizations, and (b)log pc(N) versus
log N . The solid line in (b) is from theory [Eq. (13)].

or

pc = exp[− 1
σ2

(〈k〉 −
√
〈k〉2 − 2σ2 ln(N/c′))]. (14)

From Eq. (3) withq(tc) = qc = 1− pc, the scaling law fortc
becomes

tc = −τ ln qc

= −τ ln[1− e−
1

σ2 (〈k〉−
√
〈k〉2−2σ2 ln(N/c′))]. (15)

When σ2 approaches0, employing Taylor expansion, Eqs.
(14) and (15) will reduce to Eqs. (7) and (8) respectively, by
noting that〈k〉 = m.

Figure 4 shows the scaling ofpc for mixed networks with
Gaussian degree distribution, where we observe a good agree-
ment between the theoretical formula (14) and numerical
computations. Figure 5 shows the dependence oftc on N .
There is also a good agreement between the numerics and the
formula (15).

D. Scale-free sensor networks

The three types of sensor networks discussed so far all are
homogeneous networks in the sense that the sensors are dis-
tributed uniformly in space. While homogeneous networks
allow for analytic treatment in terms of the scaling laws, in
reality non-uniform or locally preferred distribution of sen-
sors, e.g. hybrid sensor networks [22, 23], are also of in-
terest. For example, hierarchical sensor network can consist
of a large number of cheap sensors and a few more power-
ful gateways which could naturally lead to heterogeneous de-
gree distributions. Heterogeneous networks such as scale-free
networks would naturally fit in such a situation. This can be



6

0 2×10
4

4×10
4

6×10
4

8×10
4

N

80

90

100

110

t c

FIG. 5: Critical time tc versus sizeN for mixed networks hav-
ing Gaussian degree distribution with parameters〈k〉 ≈ 20 and
σ2 = 4. Data points are numerical results with simulation param-
etersπ1 = 0.01, π2 = 0, andτ = 100. Each data is averaged over
104 realizations. Solid curve is from the theoretical formula Eq. (15)
with c′ = 1.24.

further argued by considering the degree distribution. Say the
densityρ of sensors is not uniform, but depends onr in a
polar-coordinate system:ρ = ρ(r). If ρ(r) has the form of
ρ(r) ∼ r−α, then the degree distribution of the sensor net-
work in the limiting case will be scale-free:P (k) ∼ k−λ,
whereλ = D/α, D is the spatial dimension.

To show this, suppose the connecting radiusrc of a sensor
is much smaller than the characteristic scale of the system. A
sensor located atr will on average havek(r) = ρ(r)Vc ∼
ρ(r) ∼ r−α neighboring sensors, whereVc is the volume of
the D-dimensional sphere of radiusrc. We thus haver ∼
k−1/α. The number of sensors in a spherical shell of radiusr
and width∆r is n(r) ∼ ρ(r)rD−1∆r ∼ r−αrD−1∆r. From
the relation betweenr andk, we have∆r ∼ k−1/α−1∆k. If
we set∆k = 1, the shell is such that the sensors in it has on
average the same degree. The quantityn(r) thus becomes

n[k(r)] ∼ kk−(D−1)/αk−1/α−1 = k−D/α.

After normalization, the degree distribution becomesP (k) ∼
k−D/α. In the situation where the physical space in which the
sensors are distributed is two-dimensional, we haveλ = 2/α.

Numerical support for the scale-free nature of heteroge-
neously distributed sensor networks is shown in Fig. 6, where
the degree distributions of several sensor networks located in
a two-dimensional disk (symbols) are plotted, together with
theoretical results. We observe a power-law behavior in the
degree distribution and the exponent agrees well with the the-
ory.

In a strict sense, the degree distribution can be written as:
P (k) = k−λ/(

∑∞
k=m k−λ) for k ≥ m, wherem is the mini-

mum degree. Substituting the degree distribution into Eq. (5)
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FIG. 6: Degree distribution of sensor networks on a two-dimensional
disk. α = 1.25, 1.0, 0.8, 2/3 for squares, circles: diamonds, and
triangles respectively. The ratio of the connecting radius of a sensor
rc and the radius of the diskR is 0.01. The number of sensors is
N = 104. Each data is averaged over 100 realizations. The lines
are power-law distribution with exponentλ = 2/α, which areλ =
1.6, 2.5, 2.0, 3.0 from up to down.
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FIG. 7: Critical timetc versus sizeN for scale-free networks with
parametersλ = 3.5 andm = 12. Data points are simulation results
with parametersπ1 = 0.01, π2 = 0, andτ = 100. Each data is
averaged over104 realizations. Solid curve is the numeric solution
from the theory withc′ = 0.65.

yields [10]

ns = Nqpm

∑∞
k=0

pk

(k+m)λ∑∞
k=m k−λ

. (16)

As p goes to zero,ns/N also approaches zero, meaning that
scale-free sensor networks may be resilient to blind spots, as
compared with, say, random networks. The critical value
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FIG. 8: (Color online) Comparison of the number of blind spots for
the four classes of networks. Squares: random sensor network; cir-
cles: scale-free network withλ = 3.5; triangles: mixed network
with σ2 = 4; diamonds: regular network.N = 104 and〈k〉 = 20
for all networks. Each data is the average of106 random realizations.
Curves are from theory.

0 2×10
4

4×10
4

6×10
4

8×10
4

1×10
5

N

60

80

100

120

t c

FIG. 9: (Color online) Comparison of the critical timetc when blind
spots begin to occur for the four classes of networks. Squares: ran-
dom sensor network; circles: scale-free network withλ = 3.5; tri-
angles: mixed network withσ2 = 4; diamonds: regular network.
N = 104 and 〈k〉 = 20 for all networks. π1 = 0.01, π2 = 0,
andτ = 100. Each data is the average of104 random realizations.
Curves are from theory.

qc can be obtained numerically from Eq. (16) by setting
ns(qc) = c′, wherec′ ≈ 1 is a constant. The critical time
tc can be obtained fromqc astc = −τ ln qc. Figure 7 shows
the dependence oftc on the network size for scale-free net-
works. The theory and the numerical simulation agree well.

IV. DISCUSSIONS

In conclusion, we have studied the critical behavior of the
occurrence of blind spots in sensor networks. In such net-
works, at any time a sensor may be off due to battery drainage
or may be turned back on if it is recharged. We have pro-
posed a simple model to describe this on-off process. We
have shown that, in the long-time limit, the dynamical on-off
process is equivalent to a static percolation model and have
then studied the occurrence of blind spots in four classes of
topologically distinct networks: regular, random, mixed, and
scale-free. Scaling relations for the critical parameterspc and
tc with the network sizeN have been obtained. Our result
for tc is reduced to the known result of Franceshettiet al. [9]
under the same condition. The scaling relations for differ-
ent types of networks can be significantly different, i.e. from
power-law form to logarithmic. For realistic applications, the
type of the network should be identified carefully in order to
apply the scaling relations. Since our analysis depends only
on degree distribution, it can be applied to other realistic net-
works such as the wireless cellular network, the Internet, or
the transportation network, where the issue of blind spots may
be of concern. For example, in wireless cellular networks, the
likelihood that the network is totally disintegrated, i.e., the dis-
appearance of a global spanning cluster, is small. Users of the
network are more concerned with whether they can get access
to the network (e.g., to receive and make phone calls). This is
also determined by the occurrence of blind spots.

For the purpose of comparison, we have shown in Fig. 8
the number of blind spotsns versus the occupying probabil-
ity q for the four classes of networks considered in this paper,
whereN = 104 is identical for all networks. We observe
that for a fixed value ofq, ns is the smallest for the regu-
lar network, indicating that it is relatively more resilient to
blind spots. Figure 9 compares the critical timetc that the
blind spots begin to occur in the circumstance of the dynam-
ical on-off processes for the four types of networks with var-
ious network sizes. We observe that the random sensor net-
work has the smallesttc, thus it is most susceptible to having
blind spots. For example, takeN = 90000, blind spots oc-
cur at50 time steps for the random sensor network, while for
the regular network, it takes85 time steps for the first blind
spots to occur. Although in reality it is not always possible
to have regular sensor networks due to practical restrictions
(e.g., time-varying link conditions), our result provides a cri-
terion for minimizing the occurrence of blind spots: try to
make the network as regular as possible.

In an event-driven sensor network, total disintegration of
the network is highly unlikely, i.e., whether there is a span-
ning cluster may not be a pressing issue (e.g. for intrusion
detection). What one is concerned with most is whether indi-
vidual nodes with information can get access to the network,
i.e., the occurrence of blind spots. Since blind spots are more
probable in networks that are more susceptible to percolation
[10], this may present a significant challenge to the design
of secure and reliable networks: to make the network robust
against attacks or random failures, it is necessary to reduce
the percolation threshold, but the network may be unreliable
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from the standpoint of individual users because of the rela-
tively higher likelihood of blind spots.
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