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that the estimate is universally consistent, that is,kfn � fk ! 0 for
any density. Also, Devroye [3] shows that for any� > 0

fkfn � fk � kfn � fk � �g � e�n� =2:

Using these properties, it is easy to see that the testing method based on
the kernel density estimate is consistent in the sense that the probability
of error converges to zero exponentially for allf 2 k

j=1Hj . In order
to show this, suppose thatf 2 H1, and put

� = min
j>1

f � f (j) � f � f (1) :

Then

ferrorg � 9 j > 1: fn � f (1) � fn � f (j)

� (k � 1)max
j>1

fn � f (1) � fn � f (j)

� (k � 1)max
j>1

kfn � fk+ f � f (1)

� f � f (j) � kfn � fk

� (k � 1) f2kfn � fk � �g

=(k � 1) fkfn � fk � kfn � fk

� �=2� kfn � fkg

� (k � 1)e�n=2([�=2� kf �fk] )

where the last inequality follows from the previously mentioned in-
equality of Devroye [3]. The consistency offn assures that for a suf-
ficiently largen, kfn � fk < �=4 and for suchn, ferrorg �

(k � 1)e�n� =32. However, since kfn � fk may tend to zero at an
arbitrarily slow rate (see [2]), the error exponent is not uniform: it de-
pends onf . It is known (see [1], [12]) that for the hypothesesHj it is
impossible to construct a test with a uniform error exponent.
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Linear MMSE Multiuser Receivers: MAI Conditional
Weak Convergence and Network Capacity
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Abstract—We explore the performance of minimum mean-square error
(MMSE) multiuser receivers in wireless systems where the signatures
are modeled as random and take values in complex space. First we study
the conditional distribution of the output multiple-access interference
(MAI) of the MMSE receiver. By appealing to the notion of conditional
weak convergence, we find that the conditional distribution of the output
MAI, given the received signatures and received powers, converges in
probability to a proper complex Gaussian distribution that does not
depend on the signatures. This result indicates that, in a large system, the
output interference of the MMSE receiver is approximately Gaussian with
high probability, and that systems with MMSE receivers are robust to the
randomness of the signatures. Building on the Gaussianity of the output
interference, we then take the quality of service (QoS) requirements as
meeting the signal-to-interference ratio (SIR) constraints and identify
the network capacity of single-class systems with random spreading. The
network capacity is expressed uniquely in terms of the SIR requirements
and received power distributions. Compared to the network capacity
corresponding to the optimal signature allocation, we conclude that at
the cost of transmission power, the gap between the network capacity
corresponding to optimal signatures and that corresponding to random
signatures can be made arbitrarily small. Therefore, from the viewpoint
of network capacity, systems with MMSE receivers are robust to the
randomness of signatures.

Index Terms—Central limit theorem, conditional weak convergence,
martingale difference array, minimum mean-square error (MMSE)
receiver, proper complex random variable, random signature.

I. INTRODUCTION

Consider aK-user communication system equipped with linear
minimum mean-square error (MMSE) multiuser receivers.1 We focus
primarily on the following discrete-time synchronous baseband model
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[15]–[17]. In a symbol interval, the received signal at the front end
of the receiver is

Y
(N) =

K

i=1

p
Pi bisi + V (1)

where thebi ’s are the transmitted (complex) information symbols,
thePi ’s are the received powers, thesi ’s (si =

1p
N

[si1; . . . ; siN ]t)
are the signatures, andV comes from the sampling of theproper
complexwhite Gaussian noise with power spectral density�.2 (We
assume throughout that� > 0.)

The signatures provide a mechanism for separating users at the
receiver and the corresponding model is of considerable interest (see,
e.g., [6], [15], [16]). In this correspondence, we assume that the signa-
tures take values in complex space. We focus on systems with random
spreading, as in [15], [17], [19], [20]. The random signature model
is applicable to many practical systems. For example, this model is
applicable to code-division multiple-access (CDMA) systems with
very long pseudorandom spreading sequences, and also applicable to
CDMA systems with random short signatures (i.e., the period of the
signature equals the information symbol period, and repetition of the
same random signatures is adopted). In CDMA systems, the number
of chips per signatureN is sometimes called theprocessing gain. This
model is also applicable to multiple-antenna systems where the vector
si represents the fading levels of useri at each of theN antennas. In
this case, we callsi thespatial fading signatureof useri. Thesi ’s in
a multiple-antenna system are often modeled to be random and take
values inN -dimensional complex space. The independence of the
spatial fading signatures can be achieved by physically separating the
antennas by a few carrier wavelengths [7]. We note that in both CDMA
and multiple-antenna systems, the random signature model can also
account for the random phase rotation due to fading. Regardless of
the specific applications, we call the length of the signatures the
degree of freedom. More specifically, the degree of freedom is the
processing gain in a CDMA system or the number of antennas in a
multiple-antenna system [15].

We consider a more realistic scenario where users transmit data
through a fading channel, and each user is capable of decentralized
power control. Accordingly, we assume that the received powers are
random (due to imperfect power control), and are independent across
the users. We denote the received power of useri asPi and its mean
�i. Our results are asymptotic in nature, with bothK andN going to
infinity. As we scale up the system (asN ! 1), the ratio ofK toN
is denoted by�

�
= K

N
and taken to be fixed, as is standard (see, e.g.,

[15], [17], [19]).
In this correspondence, we first study the distribution of the mul-

tiple-access interference (MAI) at the output of the MMSE receiver.
The output MAI distribution is a physical-layer performance metric
and plays a crucial role in determining bit error probability. We focus on
systems where repetition of the same random signatures is adopted and
the received powers change relatively slowly compared to the symbol
rate. In these systems, it is of more interest to study the conditional dis-
tributions of the output MAI given the signatures and received powers.
Our study makes use of the notion ofconditional weak convergence
[14]. In particular, our analysis involves two modes of conditional weak
convergence—convergence almost surelyof conditional distributions
andconvergence in probabilityof conditional distributions. Roughly
speaking, our main result on the output MAI distributions can be sum-
marized as follows.

2Proper complex random processes are also known ascircularly symmetric
random processes [4]. We elaborate further on proper complex random
processes in Section III.

• Assuming that the empirical distribution function3 of the mean
received powersf�1; . . . ; �Kg converges weakly asN ! 1,
the conditional distribution of the output MAI of the MMSE re-
ceiver, given the received signatures and received powers, con-
verges in probability to a proper complex Gaussian distribution
that does not depend on the signatures.

The above result can be viewed as a generalization of [20, Theorems 3.1
and 3.2], which established the Gaussianity of the output MAI under the
assumption that the signatures are binary spreading sequences. How-
ever, the technical nature of the above result is significantly different
from that of [20, Theorem 3.2]. Indeed, the relaxation of the signatures
to be complex gives rise to possibly much more variation in the MAI,
requiring the use of the new notion of conditional weak convergence.
We note that assuming signatures are deterministic, Poor and Verdú
[12] have established the Gaussianity of the output interference of the
MMSE receiver under several asymptotic conditions (the output MAI
vanishes in these scenarios).

Next we take a network perspective and identify the network ca-
pacity of single-class systems. Loosely speaking, a set of users is ad-
missible if their simultaneous transmission does not result in viola-
tion of any of their quality of service (QoS) requirements; thenet-
work capacityis the maximum number of admissible users. Building
on the Gaussianity of the output MAI, we take the QoS requirements
as meeting the signal-to-interference ratio (SIR) constraints. Our result
shows that the network capacity can be expressed uniquely in terms of
the SIR requirements and received power distributions. The network
capacity of imperfect power-controlled systems with linear receivers
has been studied in [19]. In particular, in [19] the authors characterized
the network capacity of systems with MMSE receivers for the deter-
ministic signature case and the corresponding characterization for the
random signature case was left open. We resolve this problem in this
correspondence. Combining these results, we observe that at the cost
of transmission power, we can drive the gap between the network ca-
pacity corresponding to optimal signatures and that corresponding to
random signatures arbitrarily small.

The organization of the remainder of this correspondence is as fol-
lows. The next section contains our model description. In Section III,
we provide some necessary mathematical background. We present our
main results in Section IV, and the proofs of our main results are rele-
gated to Section V. We draw our conclusions in Section VI.

II. M ODEL DESCRIPTION

Consider a canonical discrete-time symbol-synchronous multiple-
access model. In a symbol interval, the received signal before filtering
is

Y
(N) =

K

i=1

p
Pi bisi + V:

Without loss of generality, we consider user 1. The MMSE receiver
exploits the MAI structure provided by the signatures and received
powers of the interferers. Because the received powers may vary from
symbol to symbol, we assume that the MMSE receiver has knowl-
edge of the mean received powers instead of the instantaneous received
powers of the interferers [20]. Also, assume for now that the MMSE re-
ceiver has knowledge ofP1, the instantaneous received power of user 1.

3See [2, p. 279] and [1, p. 268] for the definitions of empirical distribution
functions.
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(It turns out that there is really no need for knowledge ofP1. We will
return to elaborate on this issue in Section IV.) Define

S1
�
= [s2; . . . ; sK ]; S

�
= [s1; s2; . . . ; sK ]

D1
�
= diag(P2; . . . ; PK); E1

�
= diag(�2; . . . ; �K)

MI

�
= S1E1S

H

1 + �I; M 0

I

�
= S1D1S

H

1 + �I:

The MMSE receiver generates an output of the formcHY (N), where
c is chosen to minimize the mean-square error

J = IE c
H
Y
(N) � b1

2

P1; S :

It is straightforward to see that the MMSE receiver is
p
P1M

�1s1,
whereM

�
= P1s1s

H

1 + MI . After some algebra, the output at the
MMSE multiuser receiver can be expressed as follows (cf. [5], [15],
[19]):

y
(N)
1 =

P1s
H

1 M
�1
I

s1

1 + P1sH1 M
�1
I

s1
b1 + I(N)

1 + I(N)
2 (2)

where

I(N)
1 =

K

i=2

p
P1

1 + P1sH1 M
�1
I

s1
s
H

1 M
�1
I

p
Pi bisi

I(N)
2 =

p
P1

1 + P1sH1 M
�1
I

s1
s
H

1 M
�1
I V:

We note thatI(N)
1 denotes the output MAI andI(N)

2 denotes the effect
of background noise.

As is standard (see, e.g., [5]), the SIR is defined to be the ratio of
the desired signal power to the sum of the noise and MAI powers at the
output of the MMSE receiver in a symbol interval. Thus, we have that
the SIR of user 1 is

SIR(N)
1 =

P1 sH1 M
�1
I

s1
2

sH1 M
�1
I

M 0

I
M�1

I
s1
: (3)

As will be shown in Theorem 4.1, in a large system the output inter-
ference of the MMSE receiver can be well approximated as Gaussian.
Therefore, it is reasonable to take the QoS requirement as meeting the
SIR constraints (see, e.g., [15], [17], [19]). Because of the randomness
of the received powers and signatures, the SIR is random as well. Thus,
motivated, we adopt a probabilistic model for the users’ QoS require-
ments as follows (cf. [10])

P SIR(N)
k

� 
k > ak

where SIR(N)
k

is the SIR of userk when the degree of freedom isN ,

k the target SIRof userk, andak 2 [0; 1), k = 1; . . . ; K. That is,
the probability that the SIR of userk is no less than
k must be greater
thanak.

In this correspondence, we are interested in identifying the max-
imum number of users admissible in a single-class system. A single-
class system is one where the received powers of all the users are in-
dependent and identically distributed (i.i.d.) (see [15], [19]). We note
that this model does arise in practical situations—for example, in a
power-controlled cellular system with only voice users.

Because the received powers are i.i.d. and the signatures are i.i.d., the
SIR is identically distributed for all the users. Then,PfSIR(N)

k
� 
g

does not depend onk. Following [19], we define thenetwork capacity
of a system with linear MMSE receivers (when the degree of freedom
is N ) as follows:

�N (a)
�
= sup � P SIR(N)

1 � 
 > a :

The asymptotic network capacity�1(a) is defined as the limit of
f�N (a)g

�1(a)
�
= lim

N!1

�N (a):

III. M ATHEMATICAL PRELIMINARIES

A. Two Modes of Conditional Weak Convergence

For convenience, we letX(N) denote the collection of the signa-
tures and received powers when the degree of freedom isN , andXXX the
sequencefX(N)g. We are primarily interested in the asymptotic distri-
butions of theI(N)

1 ’s givenXXX . Because the conditional distributions of
theI(N)

1 ’s givenXXX are random probability measures, the convergence
of conditional distributions involvesconditional weak convergence. In
what follows, we refer to [14] and briefly restate a few definitions of
modes of conditional weak convergence.

It is clear that the output MAI,I(N)
1 , takes values in the complex

spaceC. LetM1 be the space of all measures on(C; B IC), whereB IC

is the Borel�-algebra onC, andM1 is the�-algebra generated by the
weak topology onM1. Let C(C) denote the space of bounded con-
tinuous functions onC. LetPXXX

N denote the conditional distribution of
I(N)
1 givenXXX. We definealmost sure convergenceof conditional dis-

tributions as follows.

Definition 3.1: The conditional distribution ofI(N)
1 givenXXX con-

verges almost surely to a random measureP� in (M1; M1), written
asPXXX

N

a:s:
=)P� , if for all f 2 C(C), f dPXXX

N ! f dP� with prob-
ability one.

As pointed out in [14], the most convenient formulation ofconver-
gence in probabilityof conditional distributions is in terms of almost
sure convergence of subsequences of conditional distributions. We state
its definition in the following.

Definition 3.2: The conditional distribution ofI(N)
1 givenXXX con-

verges in probability to a random measureP� in (M1; M1), written
asPXXX

N

P
=)P� , if every subsequencefN 0g contains a further subse-

quencefN 00g for whichPXXX

N

a:s:
=)P� .

Note that in the above, for brevity we have used the notationfN 0g
andfN 00g to represent the subsequencesfPXXX

N
g andfPXXX

N
g, respec-

tively.
BecauseC is separable and henceM1 is metrizable, the above def-

inition coincides with the standard definition of convergence in prob-
ability in a metric space. Indeed, this conclusion can be further illus-
trated by the following important result on convergence in probability
of random variablesfXng [1, Theorem 20.5].

Lemma 3.1: A necessary and sufficient condition forXn
P�!X is

that each subsequencefXn g contains a further subsequencefXn g
such thatXn ! X with probability one.

We shall use the above result repeatedly in the proof of our main
results.

B. Proper Complex Random Variables

We begin with a few definitions.

Definition 3.3: A complex random variable is defined as a random
variable of the form

t = tc + jts; j =
p�1;

wheretc andts are real random variables defined on the same proba-
bility space [9, p. 14].

As shown in [11], the “covariance” of two complex random variables
t = tc + jts andr = rc + jrs (where the “covariance” refers to
the four covariances arising between the real and imaginary parts of
t andr), when defined consistently with the corresponding notion for
real random variables, is determined by the usual (complex) covariance
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together with a quantity called thepseudocovariance. The covariance
�t; r and pseudocovariance~�t; r are defined as follows:

�t; r
�
= IE (t� IE[t])(r � IE[r]) (4)

~�t; r
�
= IE[(t� IE[t])(r � IE[r])]: (5)

Definition 3.4: A complex random variablet = tc + jts is proper
if its pseudocovariance~�t = IE[(t� IE[t])2] vanishes [11].

Proper complex random variables are also known ascircularly sym-
metriccomplex random variables. It should be noted thatt is proper if
and only iftc andts have the same variance and are uncorrelated. As
shown in [11], the complex multivariate Gaussian density assumes a
natural form only for proper complex Gaussian random variables. We
call the distribution of a proper complex Gaussian random variable a
proper complex Gaussian distribution.

C. Regularity Conditions

We assume that the signatures are chosen randomly and indepen-
dently. The model for random signatures is as follows:

si =
1p
N

[si1; . . . ; siN ]T

where thesin ’s are i.i.d. proper complex random variables with zero
mean and covariance1, that is,IE[jsinj2] = 1. For technical reasons,
we further assume thatIE[jsinj4] < 1.

We assume that thePi ’s and thebi ’s are independent. The assump-
tions we impose on the received powers and information symbols are
listed as follows.

3.P1) The empirical distribution function off�1; . . . ; �Kg con-
verges weakly to a distribution functionH� asN !1.

3.P2) ThePi ’s are uniformly bounded above and the�i ’s are
bounded below by a positive number.

3.P3) Thebi ’s are independent proper complex random variables
with IE[bi] = 0 andIE[jbij2] = 1, and the fourth moments of
thebis are bounded.

We note that Condition 3.P1) is a standard assumption imposed in the
literature on large system analysis (see, e.g., [15]). Indeed, this condi-
tion holds in many practical scenarios. For instance, when the received
powers of all users follow the same distribution, the corresponding
mean� is the same for all users, and the limiting empirical distribu-
tion is the one withP (X = �) = 1. Condition 3.P2) on the received
powers is sensible since the received power is bounded in any practical
system. Condition 3.P3) on the signal constellation covers many mod-
ulation methods of interest, for example, quaternary phase-shift keying
(QPSK) modulation schemes.

IV. SUMMARY OF MAIN RESULTS

In this section, we summarize the main contributions of this corre-
spondence. The proofs of our results are relegated to Section V.

Our first main result is on the asymptotic distributions of the output
MAI conditioned on the signatures and received powers. This result is
a generalization of [20, Theorems 3.1 and 3.2], which established the
Gaussianity of the output MAI under the assumption that the signa-
tures are binary spreading sequences. We note that although the proof
of Theorem 4.1, part a) has some similarity in flavor to that of [20,
Theorem 3.1], the technical nature of our proof for Theorem 4.1, part
b), the main part of Theorem 4.1, is significantly different from that of
[20, Theorem 3.2]. Indeed, the relaxation of the signatures to be com-
plex gives rise to possibly much more variation in the MAI. We use
conceptually the more subtle notion ofconditional weak convergence
to resolve this problem.

Theorem 4.1:Suppose Conditions 3.P1)–3.P3) hold. Then we have
the following (asN ! 1).

a) The output MAI of the MMSE receiver,I(N)
1 , has a limiting

proper complex Gaussian distribution.

b) The conditional distribution of the output MAI of the MMSE re-
ceiver, given the received signatures and received powers, con-
verges in probability to the same proper complex Gaussian dis-
tribution as in part a).

In Theorem 4.1, part a) shows that the unconditional distribution of
I(N)
1 converges (in the weak sense) to a proper complex Gaussian dis-

tribution; part b) establishes that the conditional distribution ofI(N)
1 ,

givenXXX, converges (in the weak sense) to the same proper complex
Gaussian distribution in probability (see also Definition 3.2). We note
that the limiting proper complex Gaussian distribution does not depend
on the signatures and depends “weakly” on the received powers in the
sense that its variance depends on only the empirical distribution of the
mean received powers, indicating that the MMSE receiver is robust to
the randomness of the signatures and received powers.

Since the background noiseV is proper complex Gaussian, it is
clear that conditioned onXXX, the distribution ofI(N)

2 converges in
probability to a proper complex Gaussian distribution. Also note that
conditioned onXXX, I(N)

1 , andI(N)
2 are independent. Therefore, based

on Theorem 4.1, we conclude that the conditional distribution of
the overall receiver outputI(N), givenXXX, converges in probability
to a proper complex Gaussian distribution. Heuristically, given the
received signatures and received powers, the output interference in a
large system is approximately Gaussian with high probability. This
result is particularly useful for systems in which the powers vary at a
slower rate than the information symbols and repetition of the same
signatures is adopted. The reasoning is as follows. Assuming the in-
formation symbols are independent (which is valid when interleaving
and de-interleaving are employed), the output interference, given the
received signatures and received powers, is independent across symbol
intervals, and the Gaussianity of the conditional distribution greatly
simplifies the performance analysis and characterization of channel
capacity.

We now take a networking perspective and proceed to characterize
the network capacity of single-class systems.

Building on Theorem 4.1, we take the QoS requirement as meeting
the SIR constraints. This is sensible because in view of the Gaussianity
of the output interference, the SIR is of fundamental interest for de-
tection and characterization of channel capacity, and is therefore the
key parameter that governs the system performance. Also because any
(positive) scaled version of the MMSE receiver results in the same SIR,
it suffices to use any (positive) scaled version of the MMSE receiver.
Thus, there is really no need for knowledge of the desired user’s in-
stantaneous received power for constructing the receiver. This implies
that the MMSE receiver is robust to channel uncertainty, which sug-
gests that the MMSE receiver is particularly useful in a multiple-an-
tenna wireless system, where channel estimation becomes more diffi-
cult.

In a single-class system, the received powers of all the users are iden-
tically distributed. LetF denote the received power distribution and�

its mean. Assume thatF is continuous. In what follows, we first char-
acterize the asymptotic SIR, which serves as the basis for identifying
the network capacity. Recall that

SIR(N)
1 =

P1 sH1 M
�1
I s1

2

sH1 M
�1
I M 0

IM
�1
I s1

:

In the special case where the received powers are identically dis-
tributed, we have thatMI = �S1S

H
1 + �I . For convenience, define

t
(N)
i

�
=
p
Pi bis

H
1 M

�1
I si; i = 2; . . . ; K:
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Then

s
H
1 M

�1

I M
0
IM

�1
I s1 =

K

i=2

t
(N)
i

2

+ �s
H
1 M

�2
I s1:

LetG� denote the limiting distribution of the eigenvalues of the random
matrix S1E1S

H
1 (it has been shown in [13] that the empirical distri-

bution of the eigenvalues ofS1E1S
H
1 converges weakly toG� with

probability one; see Appendix B for more details). Using the same tech-
niques as in the proof of [20, Theorem 3.1], it can be shown that

K

i=2

t
(N)
i

2
P�!

1

0

�

(�+ �)2
dG

�(�)

and

s
H
1 M

�2
I s1

P�!
1

0

1

(�+ �)2
dG

�(�):

Then it follows that

SIR(N)
1

P�!P1

1

0

1

�+ �
dG

�(�): (6)

Combining the preceding equation with (20) in Appendix B, we obtain
that SIR(N)

1 (givenP1) converges in probability toP1�0, where

�
0 =

1

2��
(�(�� 1) + �)2 + 4�� � �(�� 1)� � : (7)

We are now ready to present our main result on the network capacity
of a single-class system with MMSE receivers.

Theorem 4.2:The asymptotic network capacity�1(a) of a system
with the MMSE receiver is

�1(a) =
F�1(1� a)


�
+ 1� �

�
� �


F�1(1� a)
:

Roughly speaking, in a large network, if the users choose their sig-
natures randomly and independently, then up to

N � F�1(1� a)


�
+ 1� �

�
� �


F�1(1� a)

users are admissible in the system.
It is of interest to compare the preceding result with the corre-

sponding characterization of network capacity of a system with
optimal deterministic signatures carried out in [19]. It is shown in [19]
that the network capacity of a system with optimal signature allocation
is F (1�a)


�
+1� �

�
. Compared to Theorem 4.2, we conclude that by

allocating signatures “intelligently,” the network capacity is increased
by �


F (1�a)
. However, as the signal-to-noise ratio (SNR) increases,

the gap between the network capacity corresponding to optimal
signatures and that corresponding to random signatures vanishes. That
is, at the cost of transmission power, we can drive the gap between
the network capacity corresponding to optimal signatures and that
corresponding to random signatures arbitrarily small. This observation
leads to the conclusion that from the viewpoint of network capacity,
systems with MMSE receivers arerobust to the choice of signature
sets.

V. PROOFS OFMAIN RESULTS

A. Technical Lemmas

First we collect a few results on the moments of thet
(N)
i ’s, the proofs

of which involve techniques similar to those in [20]. The tedious de-
tails can be found in [18]. (In what follows, we use the standard notation
Refzg, Imfzg, andz to denote the real part, imaginary part, and com-
plex conjugate, respectively, of a complex numberz.)

Lemma 5.1:

i)

lim
N!1

IE

K

i=2

Re t
(N)
i

2

=
1

2

1

0

�

(�+ �)2
dG

�(�):

ii)

lim
N!1

IE

K

i=2

Im t
(N)
i

2

=
1

2

1

0

�

(�+ �)2
dG

�(�):

iii)

Var

K

i=2

Re t
(N)
i

2

! 0:

iv)

Var

K

i=2

Im t
(N)
i

2

! 0:

v)

IE t
(N)
i

4

� C1

N2
; i = 2; . . . ; K

whereC1 is a positive constant that does not depend onN .

For notational convenience, we letZ(N) denote the collection of the
bi ’s (excludingi = 1) when the degree of freedom isN , andZZZ the
sequencefZ(N)g. By our assumption,XXX andZZZ are independent. We
need the following lemmas to prove part b) in Theorem 4.1, our main
result on the conditional distribution of the output MAI. Lemmas 5.2
and 5.3 are proved in Appendix C.

Lemma 5.2: SupposeXXX andZZZ are independent. Letf (N)(XXX; ZZZ)
be a Borel function,N = 1; 2; . . .. If fLg is a subsequence offNg
and the sequenceff (L)(XXX; ZZZ)g converges in probability to some con-
stantc0, then there exists a further subsequencefL0g of fLg such that

P !: f (L )(XXX(!); ZZZ) P�! c0 = 1:

Let

ag =

p
P1

1 + P1
1

0
1

�+�
dG�(�)

:

Define forN = 1; 2; . . .

U
(N)(XXX; ZZZ)

�
= max

2�i�K

t
(N)
i

p
P1

1 + P1sH1 M
�1
I s1

W
(N)
1 (XXX; ZZZ)

�
=

K

i=2

Re t
(N)
i

2

P1

(1 + P1sH1 M
�1
I s1)2

W
(N)
2 (XXX; ZZZ)

�
=

K

i=2

Im t
(N)
i

2

P1

(1 + P1sH1 M
�1
I s1)2

:

Lemma 5.3: Every subsequencefN 0g of fNg contains a further
subsequencefN 00g such that

P !: U
(N )(XXX(!); ZZZ) P�! 0 = 1

P !:W
(N )
1 (XXX(!); ZZZ)

P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) = 1

and

P !:W
(N )
2 (XXX(!); ZZZ)

P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) = 1:
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B. Proof of Theorem 4.1

Proof of Part a): Using a similar approach to the proof of [15,
Lemma 4.3], it can be shown thatp

P1

1+ P1sH1 M
�1

I s1

P�! ag: (8)

Then it suffices to show that K

i=2 t
(N)
i converges in distribution to

a proper complex Gaussian random variable. To that end, based on
Lemma A.1 in Appendix A, it remains to verify that the three con-
ditions in Lemma A.1 are satisfied [20].

Using parts i) and ii) in Lemma 5.1, it is straightforward to see that

IE max
2�i�K

t
(N)
i

2

� IE

K

i=2

t
(N)
i

2

� 1

�
: (9)

Fix � > 0. By exploiting part v) in Lemma 5.1, we have that

P max
2�i�K

t
(N)
i > � �

K

i=2

P t
(N)
i > �

�
K

i=2

IE t
(N)
i

4

�4

� K

�4
C1

N2

! 0: (10)

Furthermore, combining parts i)–iv) of Lemma 5.1 with Chebyshev’s
inequality, we obtain that

K

i=2

Re t
(N)
i

2
P�! 1

2

1

0

�

(�+ �)2
dG

�(�) (11)

K

i=2

Im t
(N)
i

2
P�! 1

2

1

0

�

(�+ �)2
dG

�(�) (12)

thereby completing the proof of part a).
Proof of Part b): Recall that

I(N)
1 =

K

i=2

p
P1t

(N)
i

1 + P1sH1 M
�1
I s1

:

It is clear that conditioned on the signatures and received powers, the
arrayft(N)

i g still forms a complex martingale difference array with re-
spect tofFN; ig. In what follows, first we show thatmax2�i�K jt(N)

i j
is bounded inL2 norm for almost every realization ofXXX .

BecauseMI � �I � 0, we have that0 � M�1
I � 1

�
I . (By matrix

inequalityA � B (A � B), we mean thatA � B is positive definite
(semidefinite).) Also by Assumption (3.P2), we assume that thePi ’s
are bounded above byd1 and the�i ’s are bounded below byd2 > 0.
It then follows that

IE max
2�i�K

t
(N)
i

2

XXX

� IE s
H
1 M

�1
I

K

i=2

Pisis
H
i M

�1
I s1 XXX

� d1

d2
IE s

H
1 M

�1
I

K

i=2

�isis
H
i M

�1
I s1 XXX

� d1

d2
s
H
1 M

�1
I s1; since�sH1 M

�2
I s1 � 0

� d1

d2�
:

Then it is straightforward to see that

IE U
(N)(XXX; ZZZ)

2

XXX � P1

�
:

By the definition of conditional expectation,IE[jU (N)(XXX; ZZZ)j2jXXX] is
a function ofXXX only. SinceXXX andZZZ are independent, it follows that
for almost every! 2 


IE U
(N)(XXX(!); ZZZ)

2

� P1

�
: (13)

Next observe that for any subsequencefN 0g of fNg, by Lemma 5.3,
there exists a further subsequencefN 00g such that

P !: U
(N )(XXX(!); ZZZ) P�! 0 = 1

P !:W
(N )
1 (XXX(!); ZZZ)

P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) = 1

and

P !:W
(N )
2 (XXX(!); ZZZ)

P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) = 1:

Combining the above facts with (13), we conclude that there exists a
setE such thatP (E) = 1 and for any! 2 E, the following three
conditions are satisfied simultaneously.

1) TheL2 norm of jU (N )(XXX(!); ZZZ)j is bounded for allN 00.

2) jU (N )(XXX(!); ZZZ)j converges to0 in probability.

3) Both W (N )
1 (XXX(!); ZZZ) and W (N )

2 (XXX(!); ZZZ) converge in
probability to 1

2
a2g

1

0
�

(�+�)
dG�(�).

Hence, we apply Lemma A.1 in Appendix A to conclude that the con-
ditional distribution ofI(N )

1 , givenXXX, converges almost surely to a
proper complex Gaussian distribution with zero mean and covariance
a2g

1

0
�

(�+�)
dG�(�). Therefore, by Definition 3.2,PXXX

N converges
in probability to a complex Gaussian distribution with mean0 and co-
variancea2g

1

0
1

�+�
dG�(�). This completes the proof.

C. Proof of Theorem 4.2

For convenience, we define

T
(N) �=

(sH1 M
�1
I s1)

2

sH1 M
�1
I M 0

IM
�1
I s1

where the degree of freedom isN (correspondingly, thesk ’s areN -di-
mensional vectors). As shown in (6)

T
(N) P�! �

0

where�0 is given in (7).
Let fNsg denote the subsequence offNg such that

lim
N !1

�N (a) = lim sup
N!1

�N (a)

andfNig denotes the subsequence offNg such that

lim
N !1

�N (a) = lim inf
N!1

�N (a):

It is clear that

T
(N ) P�! �

0 (14)

and

T
(N ) P�! �

0
: (15)

In what follows, we first prove that�1(a) is upper-bounded by

F�1(1� a)


�
+ 1� �

�
� �


F�1(1� a)
:
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Applying Lemma 3.1 to (14), we have that there exists a subsequence
fNssg of fNsg such that

T
(N ) a:s:��! �

0

:

Fix � > 0. By Egoroff’s Theorem (cf. [19]), there exists a measurable
setA1 such thatP (A1) < � andT (N ) converges to�0 uniformly on
A1 = 
nA1. Then, for fixed� > 0, there exists an integerN0(�) such
that for allNss � N0(�), and every point inA1

�
0 � � � T

(N ) � �
0 + �:

It follows that for allNss � N0(�)

P SIR(N )
1 � 


= P SIR(N )
1 � 
 \ A + P SIR(N )

1 � 
 \A

� � + P (P1(�
0 + �) � 
) \ A :

Combining the above with the definition of network capacity yields
that

a� � < 1� F



�0 + �
:

Based on the above inequality, it can be shown that

�N (a) �
F�1(1� a+ �)

(
 � �F�1(1� a+ �))�

+1�
�

�
� �




F�1(1� a+ �)
� � :

Because both� and� are arbitrary positive numbers, we conclude that

lim
N !1

�N �
F�1(1� a)


�
+ 1�

�

�
�

�


F�1(1� a)
(16)

which dictates that

lim sup
N!1

�N (a) = lim
N !1

�N

�
F�1(1� a)


�
+ 1�

�

�
�

�


F�1(1� a)
:

It remains to show that�1(a) is lower-bounded by

F�1(1� a)


�
+ 1�

�

�
�

�


F�1(1� a)
:

We apply Lemma 3.1 to (15) to conclude that there exists a subsequence
fNiig of fNig such that

T
(N ) a:s:���! �

0

:

For a fixed� > 0, we appeal to Egoroff’s theorem again and conclude
that there exists a measurable setA2 such thatP (A2) < � andT (N )

converges to�0 uniformly onA2 = 
 n A1. Then, for fixed� > 0,
there exists an integerN1(�) such that for allNii � N0(�), and every
point inA2

�
0 � � � T

(N ) � �
0 + �:

It follows that for allNii � N0(�)

P SIR(N )
1 � 
 �P (P1(�

0 � �) � 
) \ A

� 1� F



�0 � �
� �:

Then it can be shown that

�N (a) �
F�1(1� a� �)

(
 + �F�1(1� a� �))�

+1�
�

�
� �




F�1(1� a� �)
+ � :

Therefore, we conclude that

lim
N !1

�N �
F�1(1� a)


�
+ 1�

�

�
�

�


F�1(1� a)
(17)

which leads to

lim inf
N!1

�N (a) = lim
N !1

�N

�
F�1(1� a)


�
+ 1�

�

�
�

�


F�1(1� a)

thus completing the proof.

VI. CONCLUSION

We consider a canonical symbol-synchronous discrete-time model
for wireless multiuser systems with MMSE receivers. We focus on the
cases where the signatures are modeled as random and take values in
complex space. First, we characterize the conditional distribution of the
output MAI of the MMSE receiver. By appealing to conditional weak
convergence, we have found that under the assumptions 3.P1)–3.P3),
the conditional distribution of the output MAI, given the received sig-
natures and received powers, converges in probability to a proper com-
plex Gaussian distribution that does not depend on the signatures and
depends weakly on the mean received powers. This result indicates that
in a large system, the overall output interference of the MMSE receiver
is approximately Gaussian with high probability, and the SIR is of fun-
damental interest.

Building on the Gaussianity of the output interference, we then take
a networking perspective and identify the network capacity of single-
class systems with random spreading. We have found that the network
capacity can be expressed uniquely in terms of the SIR requirements
and received power distributions. Compared to the network capacity
corresponding to the optimal signature allocation characterized in [19],
we conclude that at the cost of transmission power, the gap between
the network capacity corresponding to optimal signatures and that cor-
responding to random signatures can be made arbitrarily small. This
observation leads to the conclusion that from the viewpoint of network
capacity, systems with MMSE receivers are robust to the randomness
of signatures.

Our results are useful for performance analysis and characterization
of system limits. In particular, the bit error probability (corresponding
to a specific modulation scheme) can easily be obtained in terms of
the SIR. Based on the calculation of the bit error probability, we can
calculate packet error probability, which in turn impacts performance
measures at the network layer, such as throughput and packet delay. Our
result on the network capacity is also potentially useful for network-
level resource allocation problems such as admission control and power
control in a large system.

APPENDIX A
COMPLEX MARTINGALE DIFFERENCEARRAY AND DEPENDENT

CENTRAL LIMIT THEOREM

In what follows, we generalize the dependent central limit theorem
[8] to the complex case.
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Recall t(N)i =
p
Pi bis

H
1 M

�1
I si. It is straightforward to see that

IE[t
(N)
i ] = 0, and

IE t
(N)
i

2

= IE[b2i ]IE[Pi]IE (sH1 M
�1
I si)

2 = 0

which indicates thatt(N)i is proper.
LetFN; i denote the�-algebra generated byft(N)2 ; . . . ; t

(N)
i g

FN; i �= � t
(N)
2 ; . . . ; t

(N)
i ; i = 2; . . . ; K:

That is,

FN; i=� Re t
(N)
2 ; Im t

(N)
2 ; . . . ;Re t

(N)
i ; Im t

(N)
i :

It can be shown that fori = 2; . . . ; K

IE Re t
(N)
i FN; i�1 = 0: (18)

Therefore, the arrayfReft(N)i g; i = 2; . . . ; Kg is amartingale dif-
ference arraywith respect tofFN; ig [8]. Similarly, we have that the
arrayfImft(N)i g; i = 2; . . . ; Kg is a martingale difference array with
respect tofFN; ig. Then it follows that

IE t
(N)
i FN; i�1 = 0: (19)

We call the arrayft(N)i ; i = 2; . . . ; Kg a complex martingale differ-
ence arraywith respect tofFN; ig.

The proofs of our main results make use of the following lemma.

Lemma A.1: Suppose thet(N)i ’s are proper complex random vari-
ables, and the arrayft(N)i ; i = 2; . . . ; Kg is a complex martingale
difference array with respect tofFN; ig. Suppose the following condi-
tions hold:

M1) max
2�i�K

jt(N)i j is bounded inL2 norm;

M2) max
2�i�K

jt(N)i j converges in probability to0 asN !1;

M3) Both

K

i=2

jReft(N)i gj2 and
K

i=2

jImft(N)i gj2

converge in probability to a constanta0 asN ! 1.

Then K

i=2 t
(N)
i converges in distribution to a proper complex

Gaussian random variable with zero mean and covariance2a0.
Proof: Because thet(N)i ’s are pairwise uncorrelated, it follows

that

IE

K

i=2

t
(N)
i

2

=

K

i=2

IE t
(N)
i

2

= 0;

which implies that K

i=2 t
(N)
i is proper. Therefore, it suffices to show

thatRef K

i=2 t
(N)
i g andImf K

i=2 t
(N)
i g converge in distribution to

a real Gaussian random variable with zero mean and variancea0. To
this end, we appeal to [8]. In what follows, we verify that the corre-
sponding conditions are satisfied.

Because

max
2�i�K

jReft(N)i gj � max
2�i�K

jt(N)i j

Condition M1) implies thatmax2�i�K jReft(N)i gj is bounded inL2
norm. Moreover, we have that

P max
2�i�K

Re t
(N)
i � � � P max

2�i�K
t
(N)
i � � :

Based on Condition M2), it follows thatmax2�i�K jReft(N)i gj con-
verges in probability to0. Combining the above with Condition M3),
we appeal to [8] and conclude thatRef K

i=2 t
(N)
i g converges in distri-

bution to a real Gaussian random variable with zero mean and variance
a0. Along the same lines, it can be shown thatImf K

i=2 t
(N)
i g also

converges in distribution to a real Gaussian random variable with zero
mean and variancea0, thereby completing the proof.

APPENDIX B
A RANDOM MATRIX THEOREM

Denote the eigenvalues of the random matrixS1E1SH1 by
�1; . . . ; �N (they are random, depending on the realization ofS1),
and the empirical distribution of the eigenvalues byGN . It is shown in
[13, Theorem 1.1] that if Condition 3.P1) holds, thenGN converges
weakly to a distribution functionG� with probability one, and the
Stieltjes transformm(z) of G� is the solution of the following
functional equation:

m(z) =
1

�z + � �

1+�m(z)
dH�(�)

(20)

where the Stieltjes transformm(z) of any distributionG is defined as

mG(z)
�
=

1

�� z
dG(�)

for z 2 C+ � fz 2 C; Imfzg > 0g.

APPENDIX C
PROOFS OFTECHNICAL LEMMAS

A. Proof of Lemma 5.2

Becausef (L)(XXX; ZZZ) P�! c0, by Lemma 3.1 there exists a subse-
quencefL0g, which is a further subsequence of some subsequence of
fLg, such that

P f
(L )(XXX; ZZZ) �! c0 = 1:

That is,

I
ff (XXX;ZZZ)�!c g

= 1 a.s.

whereIA is the indicator function of the setA. BecauseXXX andZZZ are
independent, it follows that

P !: P !
0: f (L )(XXX(!); ZZZ(!0)) �! c0 = 1 = 1

which implies that

P !: f (L )(XXX(!); ZZZ) P�! c0 = 1

completing the proof.
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B. Proof of Lemma 5.3

It is clear that for any givenS, MI is positive definite, and hence
M�1

I is also positive definite. It then follows that for everyS

0 <

p
P1

1 + P1s
H
1
M�1

I s1
<
p
P1: (21)

Combining (11) and (12) with (21), we have that

W
(N)
1 (XXX; ZZZ) P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) (22)

W
(N)
2 (XXX; ZZZ) P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�): (23)

Then, for every subsequencefN 0g of fNg, combining (21) with (10)
yields that

U
(N )(XXX; ZZZ) P�! 0:

Appealing to Lemma 5.2, we conclude that there exists a subsequence
fJ 0g of fN 0g such that

P !: U
(J )(XXX(!); ZZZ) P�! 0 = 1:

Based on (22) and (23), for the subsequencefJ 0g, we resort to Lemma
5.2 again and conclude that there exists a further subsequencefN 00g
of fJ 0g such that

P !:W
(N )
1 (XXX(!); ZZZ) P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) = 1

P !:W
(N )
2 (XXX(!); ZZZ) P�! 1

2
a
2
g

1

0

�

(�+ �)2
dG

�(�) = 1:

Furthermore, it is clear that

P !: U
(N )(XXX(!); ZZZ) P�! 0 = 1

thereby concluding the proof.
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Improvement of Ashikhmin–Litsyn–Tsfasman Bound for
Quantum Codes

Ryutaroh Matsumoto, Member, IEEE

Abstract—We improve performance of the asymptotically good quantum
codes constructed by Ashikhmin, Litsyn, and Tsfasman, by using more
rational points on algebraic curves.

Index Terms—Algebraic-geometry code, Ashikhmin–Litsyn–Tsfasman
bound, quantum code.

I. INTRODUCTION

Recently, quantum computation and quantum communication have
attracted much attention, because the use of quantum-mechanical
phenomena can offer unusual efficiency in computation and com-
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