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G) Abstract—We explore the performance of minimum mean-square error
> Hf -7 \ —fn — f||} (MMSE) multiuser receivers in wireless systems where the signatures

are modeled as random and take values in complex space. First we study
the conditional distribution of the output multiple-access interference
(MAI) of the MMSE receiver. By appealing to the notion of conditional
weak convergencewe find that the conditional distribution of the output
MAI, given the received signatures and received powers, converges in
probability to a proper complex Gaussian distribution that does not
depend on the signatures. This result indicates that, in a large system, the
. . ) ) _ output interference of the MMSE receiver is approximately Gaussian with
where the last inequality follows from the previously mentioned imigh probability, and that systems with MMSE receivers are robust to the
equality of Devroye [3]. The consistency 6f assures that for a suf- randomness of the signatures. Building on the Gaussianity of the output
ficiently large n, E||f, — f|| < e/4 and for suchu, P{error} < interf_erence, we then t_ake the qualitylof service (QoS_) requirerr_\ents_ as

o —ne2/32 H inceE _ tend t ¢ meeting the S|gna_|-to-|nt¢rference ratio (SIR)'constramts and |_dent|fy
(k ] 1)_6 - However, sincé|| f» — f|| may .en 0 zgro a _an the network capacity of single-class systems with random spreading. The
arbitrarily slow rate (see [2]), the error exponent is not uniform: it devetwork capacity is expressed uniquely in terms of the SIR requirements
pends onf. It is known (see [1], [12]) that for the hypothesHs itis and received power distributions. Compared to the network capacity
impossible to construct a test with a uniform error exponent. corresponding to the optimal signature allocation, we conclude that at
the cost of transmission power, the gap between the network capacity
corresponding to optimal signatures and that corresponding to random
signatures can be made arbitrarily small. Therefore, from the viewpoint
of network capacity, systems with MMSE receivers are robust to the
The authors wish to thank the reviewers for drawing their attentioandomness of signatures.
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[15]-[17]. In a symbol interval, the received signal at the front end < Assuming that the empirical distribution functfoiof the mean

of the receiver is received powergj1, ..., ik } converges weakly a& — oo,
K the conditional distribution of the output MAI of the MMSE re-
vy = Z VP bisi+V (1) ceiver, given the received signatures and received powers, con-
i=1 verges in probability to a proper complex Gaussian distribution
where theb,’s are the transmitted (complex) information symbols, ~ that does not depend on the signatures.
the P;’s are the received powers, thes (s; = ﬁ[g”’ ..., s8;~n]")  Theaboveresultcanbe viewed as a generalization of [20, Theorems 3.1

are the signatures, arld comes from the sampling of theroper and 3.2], which established the Gaussianity of the output MAI under the
complexwhite Gaussian noise with power spectral dengi& (We assumption that the signatures are binary spreading sequences. How-
assume throughout that > 0.) ever, the technical nature of the above result is significantly different
The signatures provide a mechanism for separating users at fifagn that of [20, Theorem 3.2]. Indeed, the relaxation of the signatures
receiver and the corresponding model is of considerable interest (38&e complex gives rise to possibly much more variation in the MAI,
e.g., [6], [15], [16]). In this correspondence, we assume that the sighaquiring the use of the new notion of conditional weak convergence.
tures take values in complex space. We focus on systems with rand@ note that assuming signatures are deterministic, Poor and Verdu
spreading, as in [15], [17], [19], [20]. The random signature mode{ 2] have established the Gaussianity of the output interference of the

is applicable to many practical systems. For example, this model\fiysE receiver under several asymptotic conditions (the output MAI
applicable to code-division multiple-access (CDMA) systems with, Jichas in these scenarios)

very long pseudorandom spreading sequences, and also applicable Mext we take a network perspective and identify the network ca-
CDMA systems with random short signatures (i.e., the period of the

. . . - " acity of single-class systems. Loosely speaking, a set of users is ad-
signature equals the information symbol period, and repetition of the y g Y Y Sp 9

. . Bmssible if their simultaneous transmission does not result in viola-
same random signatures is adopted). In CDMA systems, the numtlg}'] of anv of their quality of service (Oo0S) requirements- te
of chips per signatur&’ is sometimes called th&ocessing gainThis y q y (Qos) req ! )

model is also applicable to multiple-antenna systems where the veé‘f'&rk capauty!s the maximum number of admissible users. 3uﬂd|ng
s; represents the fading levels of useat each of theV antennas. In N the Gaussianity of the output MAI, we take the QoS requirements

this case, we calt; the spatial fading signaturef useri. Thes,’sin 85 meeting the signal-to-interference ratio (SIR) constraints. Our result
a multiple-antenna system are often modeled to be random and t&8RWs that the network capacity can be expressed uniquely in terms of
values in N-dimensional complex space. The independence of tHee SIR requirements and received power distributions. The network
spatial fading signatures can be achieved by physically separating &@acity of imperfect power-controlled systems with linear receivers
antennas by a few carrier wavelengths [7]. We note that in both CDM#s been studied in [19]. In particular, in [19] the authors characterized
and multiple-antenna systems, the random signature model can dlgbnetwork capacity of systems with MMSE receivers for the deter-
account for the random phase rotation due to fading. Regardlessofistic signature case and the corresponding characterization for the
the specific applications, we call the length of the signatures th@ndom signature case was left open. We resolve this problem in this
degree of freedomMore specifically, the degree of freedom is thecorrespondence. Combining these results, we observe that at the cost
processing gain in a CDMA system or the number of antennas irofitransmission power, we can drive the gap between the network ca-
multiple-antenna system [15]. pacity corresponding to optimal signatures and that corresponding to
We consider a more realistic scenario where users transmit dedadom signatures arbitrarily small.

through a fading channel, and each user is capable of decentralize¢ihe organization of the remainder of this correspondence is as fol-
power control. Accordingly, we assume that the received powers §s. The next section contains our model description. In Section |II,

random (due to imperfect power control), and are independent acrgisrovide some necessary mathematical background. We present our
the users. We denote the received power of ugs and its mean main results in Section 1V, and the proofs of our main results are rele-

v . - A A X . : .
pi- Qur results are asymptotic in nature, with b‘m‘”‘_’*\ gt?lng t? gated to Section V. We draw our conclusions in Section VI.
infinity. As we scale up the system (5 — oc), the ratio of K to N

is denoted byv 2 % and taken to be fixed, as is standard (see, e.g., I M D
[15], [17], [19]). . MODEL DESCRIPTION

In this correspondence, we first study the distribution of the mul- Consider a canonical discrete-time symbol-synchronous multiple-
tiple-access interference (MAI) at the output of the MMSE receivesiccess model. In a symbol interval, the received signal before filtering
The output MAI distribution is a physical-layer performance metrics
and plays a crucial role in determining bit error probability. We focus on .
systems_where repetition of the sa_me random signatures is adopted and vV _ Z VP bisi 4V
the received powers change relatively slowly compared to the symbol —
rate. In these systems, it is of more interest to study the conditional dis-
tributions of the output MAI given the signatures and received powers.Without loss of generality, we consider user 1. The MMSE receiver
Our study makes use of the notion @nditional weak convergence exploits the MAI structure provided by the signatures and received
[14]. In particular, our analysis involves two modes of conditional weakowers of the interferers. Because the received powers may vary from
convergence-eonvergence almost surety conditional distributions symbol to symbol, we assume that the MMSE receiver has knowl-
and convergence in probabilitgf conditional distributions. Roughly edge of the mean received powers instead of the instantaneous received
speaking, our main result on the output MAI distributions can be surpewers of the interferers [20]. Also, assume for now that the MMSE re-
marized as follows. ceiver has knowledge d? , the instantaneous received power of user 1.

2Proper complex random processes are also knovairasarly symmetric
random processes [4]. We elaborate further on proper complex randon3See [2, p. 279] and [1, p. 268] for the definitions of empirical distribution
processes in Section Il functions.
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(It turns out that there is really no need for knowledgeof We will Ill. M ATHEMATICAL PRELIMINARIES

return to elaborate on this issue in Section IV.) Define .
A. Two Modes of Conditional Weak Convergence

A A
S1=[s2, ..., sk, S =51, 825 o0 0y SK]
) A L For convenience, we leX ") denote the collection of the signa-
D\ = diag(I%, ..., Px), Ei = diag(pz, ..., px) tures and received powers when the degree of freeddm &1dX the
y ,(I\] . . . . . . .
M, 25, E, S 4l M 25, D, ST 4 ql. sequencé)& ()]\}) We.are primarily interested |n_t.he asy_mptotl(_: distri-
butions of theZ;"" ’’s givenX . Because the conditional distributions of
theIfV) 's givenX are random probability measures, the convergence
of conditional distributions involvesonditional weak convergencia

A

s

The MMSE receiver generates an output of the feffit” (™), where
¢ is chosen to minimize the mean-square error

. 2 . L
J=TF “c”Y“) —bi| | P, S} : what follows, we refer to [14] and briefly restate a few definitions of
. ) . . modes of conditional weak convergence.
Itis straightforward to see that the MMSE receivesA#: M~ "s., It is clear that the output MAIZ\"”, takes values in the complex

where M £ Pis;s’ + M;. After some algebra, the output at thespaceC. Let M, be the space of all measures (@i, Bq), whereBq
MMSE multiuser receiver can be expressed as follows (cf. [5], [15k the Borelr-algebra on’, and M is thes-algebra generated by the
[19]): weak topology onM/;. Let C'(C) denote the space of bounded con-
Hayr—1 tinuous functions orf’. Let P3 denote the conditional distribution of
(N) P151 Ai[l S1 (N) (N) (N) _: . .. .
y =+ IV + T (2) Z;"’ givenX. We definealmost sure convergenoé conditional dis-
L+ Pisy M 51 tributions as follows.

where p Definition 3.1: The conditional distribution of ") given X con-
(N) VP Har—1 /5 verges almost surely to a random measbyen (M7, M), written
Il = Z T s g a—=1 S j\'ﬁ[[ Pi biSi X a.s. B g . X . H
— 14 Pis{'M; 51 asPi = P, ifforall f € C(C), [ fdPx — [ fdP, with prob-
B ability one.

N) vV Py R ) . . )
M = T Psf Tor si MV As pointed out in [14], the most convenient formulationcofver-
(N) PR o ~) gence in probabilityof conditional distributions is in terms of almost
We note thaf’ | denotes the output MAI aries™” denotes the effect gyre convergence of subsequences of conditional distributions. We state

of background noise. its definition in the following.
As is standard (see, e.g., [5]), the SIR is defined to be the ratio of

C . i . . . N .
the desired signal power to the sum of the noise and MAI powers at theDefinition 3.2: The conditional distribution of ;™ givenX con-
output of the MMSE receiver in a symbol interval. Thus, we have th¥€rges in probability to a random measutg in (M;, M), written

the SIR of user 1 is as P = P,, if every su}?sequenc{w’} contains a further subse-
T . a.s.
SR = P, (s{fol,S])Q - quence{ N"} for which P, == P,.
' st/ My MM s Note that in the above, for brevity we have used the notaftish}

As will be shown in Theorem 4.1, in a large system the output intend { N''} to represent the subsequendésy, } and{P5, }, respec-
ference of the MMSE receiver can be well approximated as Gaussitiely.
Therefore, it is reasonable to take the QoS requirement as meeting thBecausel is separable and hendd, is metrizable, the above def-
SIR constraints (see, e.g., [15], [17], [19]). Because of the randomnésision coincides with the standard definition of convergence in prob-
of the received powers and signatures, the SIR is random as well. Thasility in a metric space. Indeed, this conclusion can be further illus-
motivated, we adopt a probabilistic model for the users’ QoS requirgated by the following important result on convergence in probability

ments as follows (cf. [10]) of random variable$ X, } [1, Theorem 20.5].
(V) S . - -, _ .
P {Sle Z Hv} >k Lemma 3.1: A necessary and sufficient condition faF, < X is
where SIR") is the SIR of usek when the degree of freedomg, ~that each subsequen¢d,/} contains a further subsequent¥,, }
~ thetarget SIRof userk, anday, € [0, 1),k = 1, ..., K. Thatis, Such that¥,» — X with probability one.
tEe probability that the SIR of uséris no less thar, must be greater  \we shall use the above result repeatedly in the proof of our main
thanay. results.

In this correspondence, we are interested in identifying the max-
imum number of users admissible in a single-class system. A single- .
class system is one where the received powers of all the users areBm_Proper Complex Random Variables
dependent and identically distributed (i.i.d.) (see [15], [19]). We note We begin with a few definitions.
that this model does arise in practical situations—for example, in
power-controlled cellular system with only voice users. .

Because the received powers are i.i.d. and the signatures are i.i.d. YfifaPle of the form
SIR is identically distributed for all the users. Thdﬁ{S|R§€‘N) >~} PR e
does not depend dn Following [19], we define th@etwork capacity =ttt IV
of a system with linear MMSE receivers (when the degree of freedQherer, andt, are real random variables defined on the same proba-
is V) as follows: bility space [9, p. 14].

A N)
w(a) 2 sup {a|P{ >} >a}. . _ .
an(a) = sup {n ‘ SlR(l 2y As shown in[11], the “covariance” of two complex random variables
The asymptotic network capacity..(a) is defined as the limit of + = . 4 jt, andr = ». + jr. (where the “covariance” refers to

a
Definition 3.3: A complex random variable is defined as a random

{an(a)} the four covariances arising between the real and imaginary parts of
A t andr), when defined consistently with the corresponding notion for
so(a) = l\}LHiO an(a). real random variables, is determined by the usual (complex) covariance
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together with a quantity called theseudocovariancelhe covariance  Theorem 4.1: Suppose Conditions 3.P1)-3.P3) hold. Then we have

¥, and pseudocovarianég . are defined as follows: the following (asN — oc).
S 2E [(t —E[])(r — ]E[r])] 4) a) The output MAI of the MMSE receivefZ%N), has a limiting
N proper complex Gaussian distribution.
) = — —
Se.r = B[ — EFD( — ElrD]. ) b) The conditional distribution of the output MAI of the MMSE re-
Definition 3.4: A complex random variable= .. + jt. is proper ceiver, given the _rgceived signatures and received powers, con-
if its pseudocovariancE, = EE[(¢ — IE[t])?] vanishes [11]. verges in probability to the same proper complex Gaussian dis-

tribution as in part a).
Proper complex random variables are also knowci@slarly sym- . o
metriccomplex random variables. It should be noted thatproper if In Theorem 4.1, part a) shows that the unconditional distribution of

and only ift. andt, have the same variance and are uncorrelated. /@Q) converges (in the weak sense) to a proper complex _Gauss)mn dis-
shown in [11], the complex multivariate Gaussian density assume&igution; part b) establishes that the conditional distributiof 8t
natural form only for proper complex Gaussian random variables. W&en X, converges (in the weak sense) to the same proper complex
call the distribution of a proper complex Gaussian random variabldaaussian distribution in probability (see also Definition 3.2). We note

proper complex Gaussian distribution that the limiting proper complex Gaussian distribution does not depend
on the signatures and depends “weakly” on the received powers in the
C. Regularity Conditions sense that its variance depends on only the empirical distribution of the

mean received powers, indicating that the MMSE receiver is robust to
F%ﬁ(ra]-randomness of the signatures and received powers.
1 Since the background noigé is proper complex Gaussian, it is
5; = —=[5i1, ..., sL'N]T clear that conditioned oX, the distribution ofIéM converges in
, s VN . . grobability to a proper complex Gaussian distribution. Also note that
where thes;,,’s are i.i.d. proper complex random variables with zer " (N) (N) ;
mean and covariancg that is,IE[|s;, |*] = 1. For technical reasons, conditioned onX,, 7", andZ; ~ are |ndepende_n_t. Thergfor_e, b_ased
3 on Theorem 4.1, we conclude that the conditional distribution of
we further assume th|sin ] < cc. the overall receiver outpuf™), given X i babilit
We assume that thB;’s and theb;’s are independent. The assump- pul™ ~, given A, CONVerges in probability
tions we impose on the received powers and information symbols Zticrnea_prope_r complex Gau35|§1n distribution. Heurlstlc_ally, given th_e
listed as follows. received 5|gn§tures anq received powers, the ogtput |nterf§r.ence ina
large system is approximately Gaussian with high probability. This
3.P1) The empirical distribution function dfu, ..., ux} con- resultis particularly useful for systems in which the powers vary at a
verges weakly to a distribution functidi,, asN — oo. slower rate than the information symbols and repetition of the same
signatures is adopted. The reasoning is as follows. Assuming the in-
formation symbols are independent (which is valid when interleaving
and de-interleaving are employed), the output interference, given the
3.P3) Theb;’s are independent proper complex random variablggceived signatures and received powers, is independent across symbol
with IE[6;] = 0 andIE[|b;|*] = 1, and the fourth moments of intervals, and the Gaussianity of the conditional distribution greatly
the ;s are bounded. simplifies the performance analysis and characterization of channel
capacity.
We note that Condition 3.P1) is a standard assumption imposed in thg\,e rt]}cl)w take a networking perspective and proceed to characterize
Ii_terature on large syste_m analysis_(see, e.g, [15]). Indeed, this co_n[q'g network capacity of single-class systems.
tion holds in many practical scenarios. Eor !nstfince, when the rece!ve(éu“ding on Theorem 4.1, we take the QoS requirement as meeting
powers of all users follow the same distribution, the correspondigge 5| constraints. This is sensible because in view of the Gaussianity
meany. is the same for all users, and the limiting empirical distribua¢ the qutput interference, the SIR is of fundamental interest for de-
tion is the one with”(X' = 1) = 1. Condition 3.P2) on the received o tion and characterization of channel capacity, and is therefore the
powers is sensible since the received power is bounded in any practigg} ,arameter that governs the system performance. Also because any
system. Condition 3.P3) on the signal constellation covers many mogasitive) scaled version of the MMSE receiver results in the same SIR,
ulation methods of interest, for example, quaternary phase-shift keylpg, fices to use any (positive) scaled version of the MMSE receiver.
(QPSK) modulation schemes. Thus, there is really no need for knowledge of the desired user’s in-
stantaneous received power for constructing the receiver. This implies
IV. SUMMARY OF MAIN RESULTS that the MMSE receiver is robust to channel uncertainty, which sug-
In this section, we summarize the main contributions of this corr@ests that the MMSE receiver is particularly useful in a multiple-an-
spondence. The proofs of our results are relegated to Section V. ~ tenna wireless system, where channel estimation becomes more diffi-
Ouir first main result is on the asymptotic distributions of the outpLﬁU|t~
MAI conditioned on the signatures and received powers. This result isin @ single-class system, the received powers of all the users are iden-
a generalization of [20, Theorems 3.1 and 3.2], which established #glly distributed. LetF” denote the received power distribution gnd
Gaussianity of the output MAI under the assumption that the Signigs mean. Assume thd is continuous. In what follows, we first char-
tures are binary spreading sequences. We note that although the pp&&¢rize the asymptotic SIR, which serves as the basis for identifying
of Theorem 4.1, part a) has some similarity in flavor to that of [2dhe network capacity. Recall that
Theorem 3.1], the technical nature of our proof for Theorem 4.1, part (N) P, (5{13,1;151)2
b), the main part of Theorem 4.1, is significantly different from that of SR = S ar e
[20, Theorem 3.2]. Indeed, the relaxation of the signatures to be com- . (o ihAe ieéeiil_edj ;)\l/vers are identically dis.
plex gives rise to possibly much more variation in the MAI. We usg! P P " P . aly
conceptually the more subtle notion afnditional weak convergence tributed, We/have thatl; = 51 51" +nl. For convenience, define
to resolve this problem. 2 Pbisl M s, i=2, ..., K.

We assume that the signatures are chosen randomly and inde
dently. The model for random signatures is as follows:

3.P2) TheP;'s are uniformly bounded above and the's are
bounded below by a positive number.
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Then ii)
K - .
sEMTIMI M sy = ) r + st M7 25, . e WY1 A .
LetG* denote the limiting distribution of the eigenvalues of the random
matrix S1 E; S{7 (it has been shown in [13] that the empirical distri- if)
bution of the eigenvalues o, £, S{7 converges weakly t&™* with K ,
probability one; see Appendix B for more details). Using the same tech- Var <Z ‘Re {tEN) H‘) = 0.
niques as in the proof of [20, Theorem 3.1], it can be shown that i—2

K

(1\7)‘2 P /OO A . iv)
T R A et
2 L D@

d K )
an Var <Z ‘Im {tEN)H ) — 0.
i=2

s oo 1
,‘H"/ 2'? P / 1k .
M2 Lo /O peicty

Then it follows that V)
B ge el 1
sR™ 2, p / dG* (N). 6
,  — 1 L Atq () (6) IE|:t(7N)‘4:|<&, =92 K
Combining the preceding equation with (20) in Appendix B, we obtain ‘ - N2 :

that SIE,(N) (given P;) converges in probability t& 3’, where

a1 — e i 1Y
F= 241 [\/(N(a )4y = e = 1) 77] - (@ For notational convenience, we &t") denote the collection of the
We are now ready to present our main result on the network capadgif$s (excluding: = 1) when the degree of freedom 7§, and Z the
of a single-class system with MMSE receivers. sequencd Z(")}. By our assumptionX andZ are independent. We
need the following lemmas to prove part b) in Theorem 4.1, our main
result on the conditional distribution of the output MAI. Lemmas 5.2
and 5.3 are proved in Appendix C.

where(, is a positive constant that does not dependvan

Theorem 4.2: The asymptotic network capacity.. (a) of a system
with the MMSE receiver is
F'(1-a) ny

i F-"(1-a) Lemma 5.2: SupposeX andZ are independent. Let™) (X, Z)
Ibe a Borel functionN' = 1, 2, .... If {L} is a subsequence ¢tV }
%hd the sequendg’") (X, Z)} converges in probability to some con-
stantey, then there exists a further subsequeptg} of { L} such that

as(a) = +1-— n_
I
Roughly speaking, in a large network, if the users choose their s
natures randomly and independently, then up to

“1q , -
v (P Q-a o _n_ v
8(0 po F='(1-a)
users are admissible in the system.
It is of interest to compare the preceding result with the corre- Let

sponding characterization of network capacity of a system with

P{w: f(r’,)(X(w), Z) Lco} =1.

optimal deterministic signatures carried out in [19]. It is shown in [19] ag = m@ .
that the network capacity of a system with optimal signature allocation L+ fo e dG(A)
is m%“) +1— . Compared to Theorem 4.2, we conclude that by . _

aIIoca'tilhg signaturlés “intelligently,” the network capacity is increase efine forvV = 1,2, ...

by +=1"—. However, as the signal-to-noise ratio (SNR) increases, t,(;'\r) VP

. . . U(N)(X, Z) 2 max — Vil
the gap between the network capacity corresponding to optimal ’ 2<iSK 14 Prst M s,
signatures and that corresponding to random signatures vanishes. That (M2
is, at the cost of transmission power, we can drive the gap between N A o~ |Re {ti H Py
; ! ke WX, Z2)2 Y

the network capacity corresponding to optimal signatures and that 1 T L (14 PsHE M sy )2
corresponding to random signatures arbitrarily small. This observation = i

Im {7‘,51\') H P

leads to the conclusion that from the viewpoint of network capacity, K
(14 PisP M s1)2"

AN A
systems with MMSE receivers arebustto the choice of signature WX, Z2)2 Y
sets. =2

. A (N H
V. PROOFS OFMAIN RESULTS Lemma 5.3’. TITZ’very subsequencgN'} of { N} contains a further
subsequencéN"} such that

A. Technical Lemmas N P
. , P {w: ‘U(’ (X (w). Z)( _>0} =1
Firstwe collect a few results on the moments ofﬂgﬁe? ’s, the proofs

of which involve techniques similar to those in [20]. The tedious de- P {w: W"'1(N”)(X(w). 7)
tails can be found in [18]. (In what follows, we use the standard notation -
Re{z},Im{z}, andz to denote the real part, imaginary part, and com- p 1 5 [~ A .
I j ively, of [ — 5 ayg ~———— dG"(N) p =1
plex conjugate, respectively, of a complex numbgr 2 o (A7)
Lemma 5.1: and .
i) P{w: W (X (w), 2)
B R TRVl DS B NP N L [T A
/ L = — =~ 4AG" . P 2 4 * _
Jim ;‘ e{f, H B /0 A+ )2 (A) —>§ag/0 de (/\)}_1.
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B. Proof of Theorem 4.1 By the definition of conditional expectatiofiy[|U7 V) (X, Z)|*|X] is
5, a function ofX only. SinceX andZ are independent, it follows that
"for almost everyw €

Proof of Part a): Using a similar approach to the proof of [1
Lemma 4.3], it can be shown that

VB © E [(cr(“()f(wj), Zﬂ < (13)
1+ Pis]’M; s s n

) ] KN Next observe that for any subsequefd€ } of { N}, by Lemma5.3,
Then it suffices to show that_;", ¢,/ converges in distribution to there exists a further subsequer{c‘é”} such that

a proper complex Gaussian random variable. To that end, based on N
Lemma A.1 in Appendix A, it remains to verify that the three con- { U (X(w ‘ — 0} =1
ditions in Lemma A.1 are satisfied [20]. (N7
Using parts i) and ii) in Lemma 5.1, it is straightforward to see that Pow: W™ H(X(w), Z)
1, /= A
N) (N) p L 2 AN —
|:21<117<£<\ ‘ :| <E |:Z ‘t ‘ :| ©) T /0 (A +1)? G (/\)} 1

Fix e > 0. By exploiting part v) in Lemma 5.1, we have that and

r {w: WV (X (w), Z)
P{ max
2<i<K

K
(") } : (V)
f,‘ ‘>€}§T.:‘)P{‘ti ‘>E} » 1 2/-oo A dC()}_l
o ’

— - a
(M) 2" A+
kI {(z ) } Combining the above facts with (13), we conclude that there exists a
< Z — a setE such thatP(E) = 1 and for anyw € E, the following three
}'ZC conditions are satisfied simultaneously.
v U 7
Sa e 1) TheLs norm of 7" (X (w), Z)| is bounded for allV"".
-0 (10) UN") (X (w), Z)| converges td in probability.
Furthermore, combining parts i)—iv) of Lemma 5.1 with Chebyshev’s N, N ]
inequality, we obtain that 3) Both W, (X(w), 7Z) and wW," (X (w), Z) converge in

probablllty tolaj [7 (H exmet dG (N).

K . 9 1 " OO

> ‘Re {fEM H -2 / dG"(\) (11)  Hence, we apply Lemma A.1in Appendix A to conclude that the con-

— 2 /o (A +7)? (N1

11—3 ditional distribution ofZ; , givenX, converges almost surely to a

i proper complex Gaussian distribution with zero mean and covariance
thereby completing the proof of part a).

£V p 1 [%
Im{ H T3 /0 ()\ +7)2 dG"(3) (12) az [ H —A_dG*(\). Therefore, by Definition 3.2P converges
in probablllty toa complex Gaussian distribution with mé&aand co-

variance: 1 dGT This completes the proof.
Proof of Part b): Recall that o ). P P
U\, Ii \/ﬁt(m C. Proof of Theorem 4.2
1+ Pisi M sy For convenience, we define

It is clear that condltloned on the signatures and received powers, the TN A (st' M 's1)°
array{tE’\') } still forms a complex martingale difference array with re- sHMT MM s,
spectto{ F,:}. In whatfollows, first we show thahaxs<;< x ItEM | where the degree of freedomi& (correspondingly, the;’s are NV -di-
is bounded inL» norm for almost every realization & . mensional vectors). As shown in (6)

Becausell; = nl > 0, we have thab < M, < | I. (By matrix )
inequalityA = B (A > B), we mean thatl — B is positive definite T =7

(semidefinite).) Also by Assumption (3.P2), we assume thatAfie
are bounded above ki and theu;’s are bounded below by. > 0.
It then follows that
2
#) D X

E max
2<i<K

wheres’ is given in (7).
Let { N, } denote the subsequence{d¥ } such that

lim an,(a) =limsup ay(a)
Ns—oo !

N—oco

and{N;} denotes the subsequence{df} such that
< Hoart
<E |:‘51 M, (Z Pisisi ) AII 51 X:| Vlim an, (a) = lim jllf an(a).
K ' A -
(] _ .
< i]E [S{JMI 1 (2# sis! )MI 1 X} It is clear that
i (Ns) P o
<y sincensy M7 %51 >0 rr =
=, 51 1 S nsy My 51 2 and
< D TW) L, 5, (15)
= dan’ ,
Then it is straightforward to see that In what follows, we first prove that- (a) is upper-bounded by
(N P, F~'(1-a) 7 A
o L(MXZ)HX} =y ST Skl IS . s —
{ ( " i wo FH(l-a)
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Applying Lemma 3.1 to (14), we have that there exists a subsequeriteen it can be shown that
{N,s} of {N,} such that

F7'(1—a—6)
T(Nas) 25, g7, anula) 2 (Y+eF-1(1—a—-08)u
Fix 6 > 0. By Egoroff's Theorem (cf. [19]), there exists a measurable +1- ;—l = <—F—‘ 1 i a—0) + E) :

setd; such thatP(4,) < § andT V=) converges t@’ uniformly on
Ay = Q\ Ay. Then, for fixede > 0, there exists an integé¥o(¢) such  Tnherefore. we conclude that
that for all N,, > No(e), and every point ird;

. . F'(1—a 7 ny
B—e< W) < fe. o an > Ell ) +1- ;] B F*l(lf a) (7
T T
It follows that for all Nss > No(e) which leads to
(Nss) ~, }
P {SIRl =7 liminf ay(a) = lim an,
(Nss) (Noo) _ N—oco N;;—o0

(s 2 ) (R )0 e
. S S _h_ . ur

<5+ P{(P(F +e) > NA}. ST T TuTTF o

Combining the above with the definition of network capacity yieldthus completing the proof.

that
~ VI. CONCLUSION
a—-6<1-F < : ) )

3"+ We consider a canonical symbol-synchronous discrete-time model
for wireless multiuser systems with MMSE receivers. We focus on the
cases where the signatures are modeled as random and take values in
F! (1-a+6) complex space. First, we characterize the conditional distribution of the
XN (1) < (y—eF~'(1-a+06))p output MAI of the MMSE receiver. By appealing to conditional weak
N ~ convergence, we have found that under the assumptions 3.P1)-3.P3),
+1- m -1 <m - f) - the conditional distribution of the output MAI, given the received sig-
natures and received powers, converges in probability to a proper com-
Because both and$ are arbitrary positive numbers, we conclude thgslex Gaussian distribution that does not depend on the signatures and
depends weakly on the mean received powers. This result indicates that

Based on the above inequality, it can be shown that

-1
lim o, < £ -a +1-1- # (16) inalarge system, the overall output interference of the MMSE receiver
Noamoo R po Fri(l-a) is approximately Gaussian with high probability, and the SIR is of fun-
which dictates that damental interest.
Building on the Gaussianity of the output interference, we then take
1111\51 Sip an(a) = Nhliloo QN a networking perspective and identify the network capacity of single-
F(1— a) . . class systems with random spreading. We have found that the network
"+l == . capacity can be expressed uniquely in terms of the SIR requirements
R po Fril-a) and received power distributions. Compared to the network capacity
It remains to show that.. () is lower-bounded by corresponding to the optimal signature allocation characterized in [19],
we conclude that at the cost of transmission power, the gap between
F(1-a) +1-1_ ny the network capacity corresponding to optimal signatures and that cor-
TH po F7'(1-a) responding to random signatures can be made arbitrarily small. This
We apply Lemma 3.1 to (15) to conclude that there exists a subsequeﬂ%ﬁer‘,’aﬂon leads toithe conclu3|on.that from the viewpoint of network
{N,;} of {N;} such that capgcny, systems with MMSE receivers are robust to the randomness
of signatures.
T(Nii) _a.s. 3. Our results are useful for performance analysis and characterization

of system limits. In particular, the bit error probability (corresponding
For a fixeds > 0, we appeal to Egoroff’s theorem again and conclud&ﬁ a specific modulation SChe”?e) can eas_ily be obtainec_i_in terms of
that there exists a measurable detsuch that?(A,) < & andT™:)  the SIR. Based on the calcule_lt_lon of_the.blt error probability, we can
converges ta?' uniformly onA; = 2\ A,. Then, for fixede > 0, calculate packet error probability, which in turn impacts performance
there exists an intege¥ (¢) such that for allVi; > No(e), and every measures at the network layer, such as throughput and packet delay. Our

point in A, result on the network capacity is also potentially useful for network-
level resource allocation problems such as admission control and power
8 —e<TWi) < g5 4 e control in a large system.
It follows that for aIIN“' 2 ‘NU(E) APPENDIX A
COMPLEX MARTINGALE DIFFERENCEARRAY AND DEPENDENT
P {SIR&‘V“) > w} >P{(P(3 —e)>v)NA} CENTRAL LIMIT THEOREM

S1_F v 5 In what follows, we generalize the dependent central limit theorem
== g—c) [8] to the complex case.
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Recallt!™ = /P, bisf M;'s;. It is straightforward to see that Condition M1) implies thatnaxs<;< IRe{t'")}| is bounded inL,

E[#™M] = 0, and norm. Moreover, we have that
AN 2 . r 7
E |:(t§A)> :| = E[})E[P]E [(s{{[\r[flsi)z] =0 P{ max |Re {fi\)}‘ > €} < P{ max tE‘V)‘ > F} .
2<i<K 2<i<K
. . . (N) - '
which indicates that;" is proper. . . Based on Condition M2), it follows thahax, << [Re{t."’}| con-
Let Fy,: denote ther-algebra generated by, . ..., £, '} verges in probability t®. Combining the above with Condition M3),
v we appeal to [8] and conclude trfae{zj‘:2 tE‘N )} converges in distri-
Fni20o (t(;v), e tEA’)) ., i=2 ..., K. bution to a real Gaussian random variable with zero mean and variance
ag. Along the same lines, it can be shown thai{ Zf‘zz tEN)} also
That is converges in distribution to a real Gaussian random variable with zero
mean and variance,, thereby completing the proof. O
Fni=0 (Re {th)} ,Im {téN)} ,..-»Re {tEN)} ,Im {tEN) }) .
APPENDIX B

It can be shown that for= 2, ..., K A RANDOM MATRIX THEOREM

Denote the eigenvalues of the random matSxE: ST by
E [Re {tEN)HfW_I] —0. (18) Ats---s Aw _(t_hey are _ran_dom, depe_nding on the rea_lizatiorSp)_‘,
and the empirical distribution of the eigenvaluesy . It is shown in
(N)y . L ) _[13, Theorem 1.1] that if Condition 3.P1) holds, thén; converges
Therefore, the arrayRe{t, '}, i = 2, ..., K'} is amartingale dif- \yeakly to a distribution functiorG* with probability one, and the
ference arraywith respect to{ Fv, i} [8]. Similarly, we have that the gyiglties transformm(z) of G* is the solution of the following
array{Im{th)}, i =2, ..., K}isamartingale difference array with f,nctional equation:
respect to{ Fn,; }. Then it follows that

1
—Z + 6% J de“(/l)

(20)

m(z) =

E [fﬁ:'\’)‘ﬁ,i,l] = 0. (19)
We call the array{tEN)v i =2,..., K} acomplex martingale differ- where the Stieltjes transform (=) of any distribution is defined as

ence arraywith respect to{ Fw,; }.
The proofs of our main results make use of the following lemma.

'mG(z)é / )\1 dG(X)

-z

Lemma A.1: Suppose theEN)’s are proper complex random vari-

ables, and the arraft!™’, i = 2, ..., K'} is a complex martingale . ‘ , ,
difference array with respect {oF v, ; }. Suppose the following condi- forz € €7 = {z € €, Im{z} > O}.
tions hold:
M1) max |tEN)| is bounded inL, norm;
2<i<K APPENDIX C
M2) max )| converges in probability t6 asN — oo; PROOFS OFTECHNICAL LEMMAS

M3) Both A. Proof of Lemma 5.2
Becausef'") (X, Z) 2 ¢y, by Lemma 3.1 there exists a subse-

K K , L
e (N 19 uence{ L'}, which is a further subsequence of some subsequence of
S IRe(t ) and 3 flmle) T3 such that i i
i=2 i=2
converge in probability to a constait asN — oc. r {f(L,)(X, Z) — CO} =1.
Then Zi’;z tEN) converges in distribution to a proper complex
Gaussian random variable with zero mean and covariange That is,
Proof: Because theEM’s are pairwise uncorrelated, it follows
that I{f(L’>(X,Z)—c0} =1 a.s.
K 2 K .
E Z +M) _ Z E {(t(m’))z} -0 wherel 4 is the indicator function of the set. BecauseX andZ are
= P ! ' independent, it follows that

which implies thap"% , tEN) is proper. Therefore, it suffices to show P {w; P {w’; f("')(X(w), Z(w')) — (;0} = 1} =1
thatRe{3"%, ¢} andm{3"%, "} converge in distribution to

a real Gaussian random variable with zero mean z?md varianceo which implies that

this end, we appeal to [8]. In what follows, we verify that the corre-

sponding conditions are satisfied. I »
Because P{w: £ (X(w),Z)—>co}:1

max |R0{7‘,EN)}|§ max |tEN)|
<i<K 2<i<K

2< completing the proof.
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B. Proof of Lemma 5.3 [8] D.L.McLeish, “Dependent central limit theorems and invariance prin-
. . o - - ciples,” Ann. Probah.vol. 2, no. 4, pp. 620-628, 1974.
It is clear that for any giver$, M; is positive definite, and hence [9] K.S. Miller, Complex Stochastic Processes: An Introduction to Theory

M " is also positive definite. It then follows that for eveSy and Application 1st ed. Reading, MA: Addison-Wesley, 1974.
[10] D. Mitra and J. A. Morrison, “A distributed power control algorithm for
VP bursty transmissions on cellular, spread spectrum wireless networks,” in
0< — 5 g1 < \/E (21) Proc. 5th WINLAB Workshop on Third Generation Wireless Information
1+ Pisy M s, NetworksJ. M. Holtzman, Ed. Boston, MA: Kluwer Academic, 1996,
o . pp. 201-212.
Combining (11) and (12) with (21), we have that [11] F.D. Nesser and J. L. Massey, “Proper complex random processes with

applications to information theoryfEEE Trans. Inform. Theoryvol.

(V) p 1 5 [T A N 39, pp. 1293-1302, July 1993.
WX, zZ)— 3 g / m dG™(X) (22) [12] H. V. Poor and S. Verdu, “Probability of error in MMSE multiuser de-
0_x tection,”|[EEE Trans. Inform. Theoryol. 43, pp. 858-871, May 1997.
Wj)(l\’)(X’ Z) N 1ai; / , A . dG*()\). (23) [13] J. W. Silverstein and Z. D. _Bai, On the empirical di_stributio_n of_ eigen-
‘ 2 0 (A+1n)? ) values of a class of large dimensional random matricksViultivariate

Anal, vol. 54, no. 2, pp. 175-192, 1995.
Then, for every subsequen{:é"’} of { '}, combining (21) with (10) [14] T. J. Sweeting, “On conditional weak convergenck,Theor. Probah.
yields that vol. 2, no. 4, pp. 461-474, 1989. _ ' o
[15] D.N. C. Tse and S. V. Hanly, “Linear multiuser receivers: Effective in-
G P terference, effective bandwidth and user capaciBfE Trans. Inform.
‘U (X, Z)‘ —0. Theory vol. 45, pp. 641-657, Mar. 1999.
[16] S. Verdd,Multiuser Detection Cambridge, U.K.: Cambridge Univ.
Appealing to Lemma 5.2, we conclude that there exists a subsequencle7 Press, 1998.

(7 N’ [17] S. Verdl and S. Shamai (Shitz), “Spectral efficiency of CDMA with
{J7} of {N"} such that random spreading/EEE Trans. Inform. Theoryol. 45, pp. 622—-640,
P {w: aS (X(w), Z)‘ £, 0} =1. [18] J.Zhang, “Design and performance analysis of power-controlled CDMA
wireless networks with linear receivers and antenna arrays,” Ph.D. dis-
sertation, Purdue Univ., West Lafayette, IN, May 2000.

Mar. 1999.
Based on (22) and (23), for the subsequepfg, we resort to Lemma [19] J. Zhang and E. K. P. Chong, “CDMA systems in fading channels: Ad-

5.2 again and conclude that there exists a further subseqgédte missibility, network capacity, and power control2EE Trans. Inform.
of {J’} such that Theory vol. 46, pp. 962—981, May 2000.
[20] J.Zhang, E. K. P.Chong, and D. N. C. Tse, “Output MAI distributions of
o oo A linear MMSE multiuser receivers in DS-CDMA systemHEZEE Trans.
P {w: WX (W), Z) 2 < a? / oTn? dG*(A)} =1 Inform. Theory pp. 1128-1144, Mar. 2001.
0 n-

N = N =
i~
@ N

r {“‘“ WX (), 2) -5 /: ﬁ ‘IG*(A)} -t

Furthermore, it is clear that
Improvement of Ashikhmin-Litsyn—Tsfasman Bound for

P {w: U (X (w), Z)‘ LO} =1 Quantum Codes
thereby concluding the proof. Ryutaroh MatsumotoMember, IEEE
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