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Abstract—This paper considers an ad hoc network with mul-
tiple transmitter-receiver pairs, in which all transmitters are ca-
pable of harvesting renewable energy from the environment and
compete for the same channel by random access. To quantify the
roles of both the energy state information (ESI) and the channel
state information (CSI), a distributed opportunistic scheduling
(DOS) framework with a save-then-transmit scheme is proposed.
First, in the channel probing stage, each transmitter probes the
CSI via channel contention; next, in the data transmission stage,
the successful transmitter decides to either give up the channel
(if the expected reward calculated over the CSI and ESI is
small) or hold and utilize the channel by optimally exploring
the energy harvesting and data transmission tradeoff. With a
constant energy arrival model, i.e., the energy harvesting rate
keeps identical over the time of interest, the expected throughput
maximization problem is formulated as an optimal stopping
problem, whose solution is shown to exist and have a threshold-
based structure, for both the homogeneous and heterogenous
cases. Furthermore, we prove that there exists a steady-state
distribution for the stored energy level at each transmitter,
and propose an efficient iterative algorithm for its computation.
Finally, we show via numerical results that the proposed scheme
can achieve a potential 175% throughput gain compared with
the method of best-effort delivery.

I. INTRODUCTION

Conventional wireless communication devices are usually
powered by batteries that can provide stable energy supplies.
However, the lifetime of the battery limits the operation time
of such devices. Recently, energy harvesting (EH) technique
has been proposed as a promising substitution for the con-
ventional constant power supplies [1], [2], which is capable
of converting the renewable energy from the environment into
electrical energy. Compared with the conventional constant en-
ergy suppliers, the transmitter powered by energy harvesters is
restricted by a new class of EH constraints, i.e., the consumed
energy up to any time is bounded by the harvested energy
until this point [3], [4]. Therefore, to meet certain performance
requirements, such as throughput, stability, delay, etc., these
EH constraints should be carefully taken into account in the
design of the power allocation schemes for the EH-based
communication systems.

A. Related Work

Communication systems powered by energy harvesters have
been investigated in recent years. For the point-to-point wire-
less systems, the authors in [3] [5] considered the throughput
maximization problem over a finite horizon for both the cases

that the harvested energy information is non-causally and
causally known to the transmitter, where the optimal solutions
were obtained by the proposed one-dimension search algorith-
m and dynamic programming (DP) techniques, respectively.
In [4], the authors extended the results to the classic three-
node Gaussian relay channel with EH source and relay nodes,
where the optimal power allocation algorithms were proposed.
With a more practical circuit model by considering the half-
duplex constraint of the battery, the authors in [6] proposed a
save-then-transmit protocol, which divides each transmission
frame into two parts: the first one for harvesting energy and
the other for data transmission. For wireless networks with EH
constraints, the authors in [7] investigated the performance of
some standard medium access control protocols, e.g., TDMA,
framed Aloha, and dynamic-framed Aloha.

In related work on ad hoc networking, opportunistic
scheduling has been known as an effective method to utilize
the wireless resource [8], [9]. In particular, a distributed
opportunistic scheduling (DOS) scheme was introduced in
[10], [11], where only local channel state information (CSI)
is available to each transmitter. By applying optimal stopping
theory [12], it has been shown in [10], [11] that the optimal
solution for the expected throughput maximization problem
has a threshold-based structure. When channel estimation is
imperfect, the authors in [13] proposed a two-level channel
probing framework that allows the accessing transmitter to
perform one more round of channel estimation before data
transmission to improve the quality of estimated CSI and pos-
sibly increase the system throughput. The optimal scheduling
policy of the two-level probing framework was proved to be
threshold-based as well by referring to the optimal stopping
with two-level incomplete information [14].

B. Summary of Main Contributions

Compared to the conventional networks powered by con-
stant power supplies [8]–[11], [13], in our setup, both the CSI
and the energy state information (ESI) play important roles
on the system performance. Over various types of renewable
energy sources, we consider the case when the EH rate can
be approximated as a constant within the time duration of
interest. For example, the power variation coherent time of
wind and solar EH system is on the level of multiple seconds
or higher [15], [16], while the duration of one communication
block is about several milliseconds. Thus, over thousands of
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communication blocks, the EH rate keeps almost identical1.
We investigate the DOS problem for the considered network

powered by energy harvesters. All transmitters first adopt the
random access scheme and do channel probing (CP), during
which the successful link can obtain the CSI via channel
contentions, similar to those in [10], [11], [13]. Then, based
on the expected reward calculated, if the successful transmitter
decides to transmit, it adopts a save-then-transmit protocol
[6]: First, it possibly spends certain time to harvest more
energy; and then transmits in the rest of the transmission block.
Obviously, when the total duration of the transmission block is
fixed, spending more time on harvesting energy can increase
the power level for transmission, while it decreases the portion
of the time for transmission, which leads to a tradeoff to
optimize. In this paper, it is assumed that each transmitter con-
sumes all the available energy at each transmission. Although
such a power control scheme may be suboptimal, it is a simple
while efficient method to fully utilize each chance contended
for transmission, especially when the number of transmitters
is large. The main contributions of this paper are summarized
as follows.

1) We investigate the DOS framework for the ad hoc net-
work with EH transmitters, which probes both the CSI
and the ESI. The throughput maximization problem for
the considered system is cast as a rate-of-return problem
in optimal stopping theory. First, we compute the opti-
mal saving ratio (EH duration vs. transmission duration)
for the save-then-transmit scheme by maximizing the
throughput with the given CSI and ESI, which can be
transformed into a convex problem. Based on the obtained
optimal saving ratio, we prove the existence of a optimal
stopping rule for the optimal stopping problem in both
the homogeneous and heterogenous cases.

2) Under the DOS framework with the save-then-transmit
scheme, we prove the existence of the steady-state dis-
tribution for the stored energy level at each transmitter,
by constructing a “super” Markov chain with its states
being jointly determined by all transmitters. Moreover,
we propose an efficient iterative algorithm to parallely
compute the steady-state distribution at each transmitter.
When the network consists of I transmitters and each one
is with Bmax possible energy states, the computational
complexity for one iteration of the proposed algorithm
is on the order of O

(
I4B5

max

)
, which is more efficient

(when I and Bmax are large) than that for directly solving
the super Markov chain case, which is on the order of
O
(
2B2I

max

)
.

The rest of this paper is organized as follows. Section II
introduces the system model and formulates the throughput
maximization problem. Section III derives the optimal saving
ratio and the optimal stopping rule for the DOS framework.
In Section IV, we propose an iterative algorithm to compute

1In this paper, we will not consider the optimization across different EH
periods since it usually requires certain noncausal knowledge of the energy
arrival process.
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Fig. 1. One realization for the DOS system with the save-then-transmit
scheme.

the steady-state distribution for each transmitter. In Section V,
some numerical results are provided to show the influence
of EH constraints on the throughput performance. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a single-hop ad hoc network, where all the
I transmitter-receiver pairs contend for the channel by ran-
dom access. For each link, the transmitter is powered by a
renewable energy source and utilizes a rechargeable battery to
temporally store the harvested energy. Here we assume that
there is no loss for energy storage and retrieval at the battery,
and the power consumed other than communication is neg-
ligible. In addition, all operations for the considered system,
including the channel contentions and data transmissions, are
time slotted, and the duration of each time slot is a constant,
denoted as τ > 0.

1) Channel probing: As illustrated in Fig. 1, the DOS
procedure takes place in two stages: First, each transmitter
probes the channel via random access; and then the successful
transmitter may start the save-then-transmit process or directly
give up the channel2. For the first stage, we define a suc-
cessful channel contention as follows: All transmitters first
independently contend for the channel until there is only one
contending in one time slot. Furthermore, one round of CP
is defined as the duration to achieve one successful channel
contention. Denote the probability that transmitter i contends
the channel as qi, 1 ≤ i ≤ I , with 0 ≤ qi ≤ 1. As such,
the probability that the i-th transmitter successfully occupies
the channel is given by Qi = qi

∏
j ̸=i(1 − qj). Then, the

probability to achieve one successful channel contention at
each time slot is given by Q =

∑I
i=1 Qi, and it is easy to

check that Q ≤ 1 [17]. Accordingly, for the n-th round of
CP, n ≥ 1, we use Kn to denote the number of time slots
needed to achieve a successful channel contention, which is a
random variable and satisfies the geometric distribution with
parameter Q [10], [11], [13]. In this way, the expected duration
of one round CP is given as τ/Q. Suppose that the successful

2If the successful transmitter experiences a bad channel condition and a
low energy level, it may directly skip the transmission.
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transmitter i transmits signal xi, and the received signal yi is
given by

yi = hixi + zi, (1)

where hi is the channel gain and zi is the circularly symmetric
complex Gaussian (CSCG) noise with zero mean and variance
σ2 at the receiver. Across different links, {hi} are assumed
to be independent with finite mean and variance, while not
necessarily identically distributed. After one round of CP, the
successful transmitter can perfectly estimate the corresponding
channel gain via certain feedback mechanisms, and hi is
assumed to be a known constant during the whole transmission
block. After CP, the successful transmitter chooses one of the
following actions based on its local CSI and ESI:

(a) releases the channel (if the CSI and ESI indicate that the
transmission rate is lower than a threshold) and let all links
re-contend; or

(b) directly transmits during the next Mτ time slots; or

(c) holds the channel, continues EH to save energy, and then
transmits.

Note that action (b) can be treated as a special case of
action (c) when there spends no more time for energy saving.
From the whole system point of view, it may take n rounds of
CPs before completing one data transmission as depicted in
Fig. 1. In short, during the CPs, all transmitters keep harvesting
energy, and after each round of CP, only the successful
transmitter makes a choice among three actions as listed above.

2) Data transmission: When the successful transmitter de-
cides not to take action (a) defined above, the system reaches
its second stage, i.e., data transmission. For one transmission
block, it contains Mτ time slots, where Mτ is a finite integer.
During this stage, the transmitter may choose to continue EH
over more time slots and then transmit over the rest of trans-
mission block, i.e., to do action (c). When the transmitter starts
transmission, it is required to exhaust all its available energy
to fully take advantage of the opportunity for channel use [6].
Denote Bi

t ∈ ∆ as the energy level in the battery at the end of
time slot t for transmitter i, where ∆ = {0, δ, 2δ, . . . , Bmaxδ}
denotes the set of all possible energy states, with δ being the
minimum energy unit and Bmaxδ being the capacity of the
battery. In general,

{
Bi

t

}
t≥1

is a random process with state
distribution

{
Πi

t

}
t≥1

. As noted in the previous section, we
make the following assumption:

Assumption A: For many types of energy sources, in-
cluding the wind or solar, the EH rate changes slowly after
every thousands of communications blocks, and thus can be
approximately the same over such a period.

As such, we assume that the EH rate Ei at transmitter i is
a constant, and {Ei} can thus be learned and assumed known
before transmissions. It will be shown in Section IV that{
Bi

t

}
t≥1

turns out to be a non-homogeneous Markov chain,
while there still exists a steady-state distribution as time goes
to infinity (by Assumption A). We denote Πi as the steady-
state distribution for

{
Bi

t

}
t≥1

when t → ∞.

B. Problem Formulation

Now, we formulate the problem to maximize the expected
throughput of the considered network. Since the energy level
at transmitter i, i.e.,

{
Bi

t

}
t≥1

, is influenced by how the
transmitter i takes its action after it successfully occupies the
channel, we are interested in highlighting its value at the time
slot after each round of CP. To do so, we slightly modify the
notation Bi

t by reformatting the time index t: Suppose that
transmitter i occupies the channel after the n-th round of CP,
and we denote Bi

n,0 as its energy level at this time before
taking any action. If transmitter i decides to spend another m
time slots on EH, its energy level becomes Bi

n,m, which is
given by

Bi
n,m = min

{
Bi

n,0 +mτEi, Bmaxδ
}
, (2)

where n ≥ 1, 0 ≤ m ≤ Mτ , and min{x, y} denotes
the smaller value between two real numbers x and y. For
convenience, we omit the index i for either the CSI or the
ESI in the sequel. Then, after the n-th round of CP and m
additional time slots, the CSI and the ESI at the successful
transmitter are given as Fn,m = {hn, Bn,m}. Note that the
channel gain hn is now indexed by n, since we assume that
its value is determined at the end of the n-th round of CP
and fixed during the following data transmission block. In
particular, Fn,0 = {hn, Bn,0} denotes the initial information
after the n-th round of CP before any further EH and data
transmission.

Given Fn,m and the remaining transmission time (Mτ −
m)τ , the average transmission rate over the Mτ time slots is
given by

Rn,m =

(
1− m

Mτ

)
log

(
1 + |hn|2

Bn,m

σ2(Mτ −m)τ

)
. (3)

When m = Mτ , we define Rn,m = 0 due to the fact
that there is no transmission. Since hn has finite mean and
variance and the energy level Bn,m is also finite, it follows that
E [Rn,m] < ∞ and E

[
(Rn,m)2

]
< ∞. Recall that the channel

gains and the battery states are independent across different
transmitters at a given time slot; moreover, the probability
that one transmitter occupies the channel in two consecutive
channel contentions is relatively small. Therefore, {Rn,m}n≥1

are assumed to be independent random variables over n.
We denote Tn as the total time duration for completing one

data transmission. It consists of the duration of n rounds of CP,
which is given by

∑n
j=1 Kjτ with Kj denoting the number

of time slots for the j-th CP, and the data transmission block
duration Mττ . Accordingly, we obtain

Tn =
n∑

j=1

Kjτ +Mττ. (4)

Here, the first thing to optimize is the value of n, which de-
termines how long the system needs to wait for the successful
transmitter to own both “good” CSI and ESI. We call this the
wait vs. transmit tradeoff. In addition, as we discussed earlier,
after the n-th round of CP, the transmitter may use m within
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Mτ slots for EH and transmit with time (Mτ−m)τ afterwards.
Apparently, the choice of m < Mτ leads to an interesting save
vs. transmit tradeoff for us to optimize.

Denote n = N ∈ N as the stopping rule for CP with
N standing for the valid set (defined later) for N , and
m = M ∈ [0,Mτ ] as the saving ratio for EH, which together
tell the transmitter when to start the real data transmission.
Note that although M indicates the number of time slots
for EH, we still call it a ratio since it divides the whole
transmission block into two parts. Then, with n = N in (4)
and m = M in (3), the total time duration for completing one
data transmission is given by TN with a rate RN,M . If such a
process repeats L times with the total amount of transmitted
bits RNl,Ml

Mττ at each transmission, 1 ≤ l ≤ L, we obtain
the average throughput λ for the considered system as∑L

l=1 RNl,Ml
Mττ∑L

l=1 TNl

−→ λ =
E [RN,MMττ ]

E [TN ]
, a.s., (5)

as L → ∞3 by the renewal theory [18]. Note that the
expectation of the numerator in (5) is taken over RN,M , which
incorporates hN , BN,0, M , and N . As it will be proved in
Section IV, there exists a steady-state distribution for BN,0.
Thus, BN,0 is with the distribution given by this steady-state
distribution, and this guarantees that (5) is valid. Define the
maximum throughput λ∗ as

λ∗ , sup
N∈N , 0≤M≤Mτ

E [RN,MMττ ]

E [TN ]
, (6)

where sup(·) indicates the least upper bound for a set of real
numbers, and

N , {N : N ≥ 1, E [TN ] < ∞, for 0 ≤ M ≤ Mτ} . (7)

From the definition of λ, we see that M only appears in the
numerator, such that the optimal M to maximize λ is the same
as the one to maximize E [RN,MMττ ]. In addition, maximiz-
ing E [RN,MMττ ] over M is equivalent to maximizing RN,M

for each given N . Therefore, to solve problem (6), we first
find the optimal saving ratio M∗ that maximizes RN,M ; next,
with M∗, we solve the optimal stopping problem (6) to find
the optimal stopping rule N∗. The details are given in the next
section.

III. OPTIMAL SOLUTION

A. Optimal Saving Ratio M∗

After the N -th round of CP, the successful transmitter
obtains the information FN,0. Then, the transmission rate
RN,M is deterministic over the transmission block. Over all
possible transmission rates that the transmitter can achieve,
define

VN = max
0≤M≤Mτ

RN,M , (8)

and
M∗ = arg max

0≤M≤Mτ

RN,M . (9)

3By Assumption A, L → ∞ is valid under our constant energy arrival
model.

Note that when M = Mτ , it follows that RN,M = 0
according to our definition in Section II-A, which implies that
Mτ cannot be optimal, and thus, we take 0 ≤ M ≤ Mτ − 1.
We first consider a continuous version of RN,M (denoted as
RN,ρ) by relaxing M/Mτ as ρ, 0 ≤ ρ < 1:

max
0≤ρ<1

RN,ρ = max
0≤ρ<1

(1− ρ)

· log
(
1 + |hN |2min{BN,0 + ρMττE,Bmaxδ}

(1− ρ)Mττσ2

)
. (10)

After solving (10), we will show how to obtain the optimal
solution of problem (8).

First, we establish some properties for the objective function
of problem (10).

Proposition 3.1: For arbitrary a, b ≥ 0, we have that

1) the function y(x) = (1 − x) log
(
1 + a+bx

1−x

)
is concave

over [0, 1), and limx→1− y′(x) < 0;

2) the function g(x) = (1 − x) log
(
1 + a

1−x

)
is concave

and non-increasing over [0, 1).
Since both y(x) and g(x) are continuous and differentiable,
we can prove the above properties by taking the first-order
and second-order derivatives. The details of the proof can be
found in [20].

Since ρ ∈ [0, 1), when Bmaxδ−BN,0

MττE
< 1, RN,ρ is concave

over
[
0,

Bmaxδ−BN,0

MττE

]
by part 1) of Proposition 3.1, and

RN,ρ is non-increasing on
[
Bmaxδ−BN,0

MττE
, 1
)

by part 2) of
Proposition 3.1. Thus, RN,ρ cannot achieve its maximum on(

Bmaxδ−BN,0

MττE
, 1
)

. When Bmaxδ−BN,0

MττE
≥ 1, RN,ρ is simply

concave over ρ on [0, 1). Therefore, we treat this fact as a
new constraint over ρ, and rewrite problem (10) as

maxGN,ρ = max(1− ρ) log

(
1 + |hN |2BN,0 + ρMττE

(1− ρ)Mττσ2

)
s.t. BN,0 + ρMττE ≤ Bmaxδ, 0 ≤ ρ < 1. (11)

Next, we establish the following proposition to solve prob-
lem (11), where the obtained solution is optimal to problem
(10) as well.

Proposition 3.2: The optimal solution ρ∗ to problem (11)
is given by:

ρ∗ =

{
min

{
ρ0,

Bmaxδ−BN,0

MττE

}
, when C+D

1+C ≥ log(1 + C);
0, otherwise,

where C =
|hN |2BN,0

Mττσ2 , D = |hN |2E
σ2 , and ρ0 is the unique

solution for the equation log
(
1 + C+Dρ

1−ρ

)
= C+D

1−ρ+C+Dρ

when C+D
1+C ≥ log(1 + C).

Proof: See Appendix A.
Based on the optimal solution ρ∗, the optimal saving ratio

M∗ for RN,M in (8) can be obtained easily: We only need to
compare RN,⌊ρ∗Mτ⌋ against RN,⌈ρ∗Mτ⌉, and M∗ should attain
the larger value. Specifically, we have the following result.

Proposition 3.3: The optimal saving ratio M∗ to problem
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(8) is given by

M∗ =

 ⌊ρ∗Mτ⌋ , if RN,⌊ρ∗Mτ⌋ ≥ RN,⌈ρ∗Mτ⌉;
⌈ρ∗Mτ⌉ , if RN,⌈ρ∗Mτ⌉ > RN,⌊ρ∗Mτ⌋;
0, otherwise.

(12)

where ρ∗ is obtained by Proposition 3.2.
Remark 3.1: After each round of CP, the successful trans-

mitter can compute M∗ according to Proposition 3.3 based
on the information FN,0 before making any decisions. Then,
it follows the optimal stopping rule N∗ to decide whether to
release the channel (when n < N∗) or to start the save-then-
transmit process (when n = N∗), which will be discussed in
the next subsection.

B. Optimal Stopping Rule for Channel Probing

In previous subsection, VN is treated as a real number
for known FN,0. However, at each round of CP, FN,0 is
unknown before the successful CP and should be treated as
a random variable, which implies that VN should also be a
random variable. With a little abuse of notation, we still use
VN to denote the maximum of transmission rate with FN,0

being random. Thus, the optimal throughput λ∗ in (6) can be
rewritten as

λ∗ = sup
N∈N

E [VNMττ ]

E [TN ]
. (13)

Then, we define the optimal stopping rule as

N∗ , arg sup
N∈N

E [VNMττ ]

E [TN ]
. (14)

This problem is related to the rate of return optimal stopping
problem discussed in [12]. Note that in (13), the random
sequence {VN}N≥1 may not be identically distributed.

First, we consider the optimal stopping rule N∗ for the ho-
mogeneous case: EH rates are the same, i.e., E1 = · · · = EI ,
{h1, . . . , hI} are i.i.d., and each transmitter contends for the
channel with the same probability such that {VN}N≥1 are i.i.d.
Afterwards, we extend the results to the heterogenous case,
i.e., {VN}N≥1 are independent but not identically distributed.

1) Homogeneous case: In order to solve problem (13), we
introduce an auxiliary problem: Given some λ > 0, we define
the maximum expected net reward as

r∗(λ) , sup
N∈N

E [rN (λ)] , (15)

where rN (λ) = VNMττ−λTN is the net reward if we transmit
after the N -th round of CP, and the expectation in (15) is taken
over VN (which incorporates hN , BN,0 and M∗), N , and TN

as given in (4). This problem is similar to the problem for
selling an asset without recall [12]. Furthermore, we rewrite
the net reward by rN (λ) = (VN − λ)Mττ − λτ

∑N
j=1 Kj .

The term (VN − λ)Mττ can be regarded as the gain from
data transmission which is maximized by the optimal saving
ratio M∗ from Proposition 3.3, and the term λτ

∑N
j=1 Kj is

treated as the accumulated cost for the total of N rounds of
CP. Thus, similar to the problem for selling an asset without

recall [12], we consider the following sequence of rewards:

r1(λ), r2(λ), . . .

The following lemma shows that there exists an optimal
stopping rule for problem (15).

Lemma 3.1: The optimal stopping rule N∗(λ) for (15)
exists, such that

r∗(λ) = E
[
rN∗(λ)(λ)

]
, (16)

where r∗(λ) is the optimal value defined in (15). Moreover,
r∗(λ) is decreasing over λ.

Proof: See Appendix B.
The next lemma connects problem (15) and problem (13),

to prepare us for obtaining the optimal stopping rule in the
original problem (13).

Lemma 3.2: (i) If there exists λ∗ such that r∗(λ∗) = 0,
this λ∗ is the optimal throughput defined in (13). Moreover,
if r∗(λ∗) = 0 is attained at N∗(λ∗), the stopping rule N∗ =
N∗(λ∗) is optimal for (13), which is defined in (14).

(ii) Conversely, if (13) and (14) are true, there is r∗(λ∗) = 0,
which is attained at N∗ given by (14).

Proof: The conclusion directly followings Theorem 1 in
Chapter 6 of [12], which is skipped here.

By the second part of Lemma 3.1, r∗(λ) is decreasing over
λ from a nonnegative value to −∞. Then, there exists λ∗

such that r∗(λ∗) = 0. Therefore, by the first part of Lemma
3.1 and Lemma 3.2, we know that the optimal stopping rule
N∗(λ∗) for r∗(λ∗) exists, which is also optimal for (13), i.e.,
N∗ = N∗(λ∗). The following proposition formally quantifies
the optimal stopping rule N∗ and the equation to compute the
optimal throughput λ∗.

Proposition 3.4: The optimal stopping rule to solve prob-
lem (13) is given by

N∗ = min {N ≥ 1 : VN ≥ λ∗} , (17)

where VN = RN,M∗ with M∗ given in Proposition 3.3.
Moreover, λ∗ satisfies the following equation

E
[
(VN − λ∗)+

]
=

λ∗

QMτ
, (18)

where the function (x)+ means max{x, 0} for any real number
x, and Q is the probability of a successful channel contention
defined in Section II-A.
The proof can be found in [20].

Remark 3.2: By solving (18), we can obtain the optimal
throughput λ∗. Since VN = RN,M∗ is a function of random
variables hN and BN,0, we can calculate the expectation on
the left-hand side of (18) for each given λ. Note that how
to compute the distribution, i.e., the steady-state distribution
Π with given λ, for BN,0 will be given in Section IV. It is
worth noticing that for a given λ ≥ 0, an upper bound of
this expectation can be obtained by fixing Π = [0, . . . , 0, 1].
As λ increases from zero to infinity, this upper bound will
decrease to zero at some λ̃ < ∞. Since the right-hand side of
(18) is strictly increasing over λ within the range [0,+∞),
there at least exists one λ∗ satisfying (18). Therefore, an
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one-dimension search can be applied to obtain the optimal
throughput over the range

[
0, λ̃

]
.

2) Heterogeneous case: For the case that {VN}N≥1 are
independent but not identically distributed (across both time
N and different users), we use the similar idea in [11] to
treat VN as a compound random variable whose distribution
is a composition of distributions over different transmitters, as
shown below

Pr {VN ≤ λ} =

I∑
i=1

Qi

Q
Pr

{
V i
N ≤ λ

}
, (19)

where Pr
{
V i
N ≤ λ

}
is the conditional probability over i.

Recall that Q is the probability of a successful channel
contention, and Qi is the probability that the i-th transmitter
is the successful one for 1 ≤ i ≤ I , which are both defined in
Section II-A.

Proposition 3.5: The optimal stopping rule N∗ has the
same form as in (17) when {VN}N≥1 are independent but
not identically distributed. In addition, λ∗ defined in (13) can
be computed from the equation

I∑
i=1

Qi

Q
E
[
(V i

N − λ∗)+
]
=

λ∗

QMτ
. (20)

Remark 3.3: Proposition 3.5 implies that when all transmit-
ters have different statistics of the CSI and the ESI, each one
still has the same threshold which is globally determined. The
intuition is similar to that in [11]: In order to guarantee the
overall system performance, the transmitter with a bad channel
condition and a low energy level should “sacrifice” its own
reward, while the one with good conditions should transmit
more data.

The next theorem gives the overall optimal scheduling
policy in the DOS with save-then-transmit scheme, for both
homogeneous and heterogeneous cases.

Theorem 3.1: After the N -th round of CP, it is optimal for
the successful transmitter to take one of the following two
options:

1) transmit after M∗ slots for EH if VN ≥ λ∗, where M∗

is given by Proposition 3.3;
2) release the channel immediately if VN < λ∗, and let all

transmitters to perform the next round of CP.
Proof: The conclusion directly follows Propositions 3.3

and 3.5.

IV. BATTERY DYNAMICS

In this section, we show that the energy level stored at
each transmitter forms a Markov chain over time, while
the state transition probabilities for different transmitters are
coupled together. However, we propose an iterative algorithm
to compute the corresponding steady-state distribution, which
is shown to converge the global optimal point. Note that the
algorithm is valid under Assumption A that EH rates are
identical over thousands of time slots, which guarantees the
asymptotic analysis in this section sound.

Note that after CP, if the successful transmitter releases the
channel, then the next round of CP will start. If the transmitter
starts the transmission, its energy level will become zero at
the end of the transmission block according to Section II-A.
During this time, all other transmitters will keep harvesting
energy within this period. Thus, the energy level transition
over the transmission block can be determined. To simplify
our analysis, the transmission block is treated as one time slot
for the purpose of counting battery state transitions.

For transmitter i with EH rate Ei, 1 ≤ i ≤
I , the set of its energy states is given by ∆i ={
0, Eiτ, 2Eiτ, . . . ,

⌊
Bmaxδ

Ei

⌋
Ei, Bmaxδ

}
, and the energy lev-

el Bi
t ∈ ∆i. In addition, we denote Πi

t =
[
πi
t,0 · · ·πi

t,Bmax

]
as distribution of the energy level for the i-th transmitter at
time t.

Suppose that transmitter i is at energy level ui ∈ ∆i, there
are three events that may happen at time slot t:

(i) It occupies the channel and transmits. According to
Section II-A, transmitter i consumes all the energy for the
transmission, and transfers to the energy level 0 after the
transmission. Thus, the transition probability is given by

piui,0 = Qip
i
tr(ui), (21)

where Qi is the probability that the i-th transmitter occupies
the channel, and pitr(ui) is the probability that it successfully
transmits at the energy level ui. Furthermore, according to
(17), pitr(ui) can be computed as

pitr(ui) = Pr
{
V i ≥ λ∗}

=Pr

{
log

(
1 + |h|2 ui +M∗τEi

(Mτ −M∗)τσ2

)
≥ λ∗

1− M∗

Mτ

}
, (22)

where M∗ is the optimal saving ratio according to Proposition
3.3. Note that in (22), |h|2 is the only random variable while
its distribution is known.

(ii) Other transmitters occupy the channel and transmit. If
anyone among the other I − 1 transmitters sends data, trans-
mitter i will harvest MττE

i units of energy during this period,
and then attain level vi = min

{
ui + EiMττ,Bmaxδ

}
. Sup-

pose the j-th transmitter transmits. Similar to the first case, the
probability of transmission performed by the j-th transmitter
is given by Qj

∑Bmax

b=0 πj
t,bp

j
tr(bE

jτ), where bEjτ ∈ ∆j

and thus b ∈
{
0, 1, 2, . . . ,

⌊
Bmaxδ
Ejτ

⌋
, Bmax

}
. Since there are

in total I − 1 transmitters, the transition probability for the
transmitter i from level ui to vi is given by

piui,vi =
∑
j ̸=i

Qj

Bmax∑
b=0

πj
t,bp

j
tr(bE

jτ). (23)

(iii) No transmission happens. In this case, transmitter i
just harvests Eiτ units of the energy and goes into wi =
min

{
ui + Eiτ,Bmaxδ

}
. The probability of this case happen-

ing can be directly obtained as

piui,wi
= 1− piui,0 − piui,vi . (24)

Note that when ũi = vi = wi, the transition probability is just
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given by

piui,ũi
= piui,vi + piui,wi

= 1− piui,0. (25)

In this way, we can compute all {piui,ũi
} for 1 ≤ i ≤ I ,

where ui ∈ ∆i and ũi ∈ {0, vi, wi, Bmaxδ}. The transi-
tion probability matrix is nothing but Pi

t = {piui,ũi
} with

dimension
(⌈

Bmaxδ
Eiτ

⌉
+ 1

)
×
(⌈

Bmaxδ
Eiτ

⌉
+ 1

)
. Obviously, Pi

t is
a stochastic matrix, i.e, a square matrix in which all elements
are nonnegative and the row sum is 1. However, Pi

t depends
on t since piui,vi depends on the state distribution Πj

t for all
j ̸= i. Therefore,

{
Bi

t

}
t≥0

is a non-homogeneous Markov
chain, whose state evolution is given by

Πi
t+1 = Πi

tP
i
t, t ≥ 0. (26)

We propose Algorithm I, which is summarized in Table I, to
compute the steady-state distribution for all transmitters. Here,
the infinity norm is applied, which is defined as ∥ a ∥∞=
max1≤i≤n |ai| for a = [a1 · · · an].

TABLE I
ALGORITHM I: COMPUTE THE STEADY-STATE DISTRIBUTION FOR ALL

TRANSMITTERS.

• Initialize Πi
0 for 1 ≤ i ≤ I , ε, and compute piui,0 by (21)

for all ui ∈ ∆i and 1 ≤ i ≤ I;
• Set t = 0, compute Pi

0 by (23)–(25) for all 1 ≤ i ≤ I ,
and compute Πi

1 by (26) for all 1 ≤ i ≤ I . Then:
– While max1≤i≤I ∥ Πi

t+1 −Πi
t ∥∞> ε, repeat:

1) t = t+ 1;
2) Update Pi

t by (23)–(25) for all 1 ≤ i ≤ I;
3) Compute Πi

t+1 by (26) for all 1 ≤ i ≤ I;
– end.

• Algorithm ends.

Proposition 4.1: For any given initial state distribution Πi
0,

Πi
t =

[
πi
t,0 · · ·πi

t,Bmax

]
, generated by Algorithm I, converges

to a unique steady-state distribution Πi for all 1 ≤ i ≤ I .
Proof: See Appendix C.

Remark 4.1: The steady-state distribution for all transmit-
ters can be obtained by the iterative computation Πt+1 = ΠtP
over the “super” Markov system as well, which is constructed
in Appendix C. However, this is not as efficient as Algo-
rithm I. From the computational complexity point of view,
suppose that each transmitter has Bmax energy levels, and
there are I transmitters in total. The number of the states
in the “super” Markov chain is BI

max. If there is only one
processer, one iteration of the state distribution for the “super”
Markov chain requires approximately O

(
2B2I

max

)
floating-

point calculations. On the contrary, by using Algorithm I,
(23) requires O

(
I2B2

max

)
calculations, and updating {Pi

t}
requires 2IBmax calculations according to (24). In addition,
{Πi

tP
i
t} requires 2IB2

max calculations. Overall, one iteration
for all transmitters requires approximately O

(
I4B5

max

)
float-

ing point calculations, which is more efficient than the case

for the “super” Markov chain especially when Bmax and I
are large. Moreover, our algorithm can also be operated in a
parallel way, i.e., computing Πi

t+1 = Πi
tP

i
t for 1 ≤ i ≤ I at

the same time over different cores.

V. NUMERICAL RESULTS

In this section, we show the impact of different parameters
on the throughput performance. The baseline is a best-effort
delivery where the data is transmitted whenever the channel
contention is successful. Note that such method can be realized
by fixing M = 0 and setting the threshold of CP in (17) as
zero. Denote λ0 as throughput obtained by such a best-effort
delivery, which can be calculated as

λ0 =

∑I
i=1

Qi

Q E
[
Mτ log

(
1 + |hi

n|2
Bi

n,0

Mττσ2

)]
1
Q +Mτ

. (27)

Denote λ∗ as the throughput obtained by the proposed DOS
with the optimal saving ratio M∗.

In general, a typical button cell has the capacity of 150 mAh
with the end-point voltage of 0.9 V, which is equal to 150 mAh
× 3600 s/h × 0.9 V = 486 J. A thin-film rechargeable battery
can offer 50 µAh with 3.3 V, which is equal to 0.594 J. Since
a typical transmission time interval is on the time scale of
milliseconds, we let the energy unit be δ = 10−3 J in the
simulation. Accordingly, we set the capacity of the battery
Bmaxδ ∈ [100δ, 20000δ], which is smaller than the capacity
volume of a button cell battery. Also, the current commercial
solar panel can provide power from 1 W to more than 400 W,
which is equivalent to 1δ /ms ∼ 400δ /ms. According to this
fact, in our simulation, we let the EH rate vary within the range
[1δ, 16δ]. In addition, the channel gains are i.i.d for different
links and the squares of the channel gains follow exponential
distribution with mean 5. The variance of the noise is set to
be 100 mW. The length of one time slot is also unified with
τ = 1 ms, and the number of slots for data transmission is
Mτ = 300.

In Fig. 2(a), we draw the throughput as the function of the
EH rates with fixed battery capacity Bmaxδ = 20000δ. We
consider a homogeneous ad hoc network with 5 transmitter-
receiver pairs in total. We observe that the proposed DOS
with the save-then-transmit scheme outperforms the best-effort
delivery and the gain increases as the EH rate increases. When
E = 2δ, λ∗ is about 2.75 times of λ0. In Fig. 2(b), we plot the
throughput as the function of the battery capacity Bmaxδ over
a fixed EH rate at E = 6δ. The intuition is similar as the case
of various EH rates. However, when the battery capacity is
more than 12000δ, λ∗ is relatively stable as Bmaxδ increases.
It implies that if the battery capacity is large enough, it will
not influence the throughput performance of the DOS with the
save-then-transmit scheme. Intuition is that since the EH rate
is fixed, the extra storage for the energy is rarely used.

Finally, in Fig. 3, we show the steady-state distribution of
the stored energy at each transmitter. In this setup, there are 6
transmitter-receiver pairs in the network; and each transmitter
has a unique EH rate (E = δ, 2δ, . . . , 6δ) and contends for the
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Fig. 2. Throughput comparison (λ∗- DOS with the same-then-transmit
scheme, λ0- Best-effort delivery (a) Throughput v.s. EH rate; (b) Throughput
v.s. battery capacity.
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Fig. 3. Steady-state distribution in a heterogenous network.

channel with the same probability 1/6. Each bar in the figure
indicates the probability of staying at the corresponding energy
level. We have Bmaxδ = 100δ and Mτ = 5 in this case. We
observe that the transmitter with a higher EH rate is more
likely to stay in the state with full energy.

VI. CONCLUSION

In this paper, we investigated the DOS for a single-hop
ad hoc network in which each transmitter is powered by a
renewable energy source and accesses the channel randomly.

Our DOS framework includes two successive processes: All
transmitters first probe the channel via random access, and
then the successful transmitter decides whether to give up
the channel or to start the save-then-transit process. Given
the CSI and the ESI, the optimal saving ratio was first
obtained by maximizing the average transmission rate over the
transmission block. Then, based on this result, the expected
throughput maximization problem was solved to obtain the
optimal stopping rule, which was formulated as a rate-of-return
optimal stopping problem. The optimal stopping rule was
proved to be a threshold policy for both the homogeneous and
heterogeneous cases. Furthermore, the stored energy level at
each transmitter was shown to be a non-homogeneous Markov
chain, which was proven to own a steady-state distribution as
time goes to infinity, where we proposed an efficient iterative
algorithm for its computation.
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APPENDICES

A. Proof of Proposition 3.2

By part 1) of Proposition 3.1, we obtain that GN,ρ is
concave over ρ ∈ [0, 1), which means that G′

N,ρ =
dGN,ρ

dρ

is decreasing over [0, 1) and attains its maximum at ρ = 0.
Then, finding the maximum of GN,ρ boils down to two cases:

1) G′
N,ρ

∣∣
ρ=0

< 0: It follows that GN,ρ is decreasing over
[0, 1), and ρ∗ = 0 is the optimum.

2) G′
N,ρ

∣∣
ρ=0

≥ 0: The point ρ0, satisfying G′
N,ρ

∣∣
ρ=ρ0

=

0, lies on the right-hand side of ρ = 0. By part 1) of
Proposition 3.1, G′

N,ρ < 0 as ρ → 1−, which implies that
ρ0 ∈ [0, 1). Since the optimal point ρ∗ ≤ Bmaxδ−BN,0

MττE

due to (11), it follows that ρ∗ = min
{
ρ0,

Bmaxδ−BN,0

MττE

}
.

Note that G′
N,ρ

∣∣
ρ=0

≥ 0 is equivalent to C+D
1+C ≥ log(1 +C),

where C =
|hN |2BN,0

Mττσ2 ≥ 0, D = |hN |2E
σ2 ≥ 0, and

G′
N,ρ

∣∣
ρ=ρ0

= 0 is equivalent to

log

(
1 +

C +Dρ0
1− ρ0

)
=

C +D

1− ρ0 + C +Dρ0
. (28)

The proof that (28) has a unique solution when C+D
1+C ≥

log(1 +C) can be found in [20]. In short, it is shown in [20]
that the left-hand side of (28) has only one intersection with
the right-hand side for ρ ∈ [0, 1), and the intersection point is
attained at ρ0. Since ρ0 is unique in (28), ρ0 can be found just
by adopting bisection search. In conclusion, the proposition is
proved.

B. Proof of Lemma 3.1

For the first part of lemma, it follows by Theorem 1 in
Chapter 3 of [12] that N∗(λ) exists and r∗(λ) is attained by
this N∗(λ) if the following two conditions are satisfied:

(C1) lim supN→∞ rN (λ) ≤ ∞, a.s.;
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(C2) E [supN rN (λ)] ≤ ∞.
For (C1), since E [RN,M ] < ∞ and E

[
(RN,M )2

]
< ∞, both

E[VN ] and E[V 2
N ] are finite as well. Note that λτ

∑N
j=1 Kj →

∞ as N → ∞. Thus, by Theorem 1 in chapter 4 of [12],
we obtain lim supN→∞ rN (λ) → −∞ a.s., which proves that
(C1) holds.

For (C2), it can be shown that

E
[
sup
N

rN (λ)

]
=E

sup
N

(VN − λ)Mττ − λτ
N∑
j=1

Kj


≤E

[
sup
N

((VN − λ)Mττ − λτN)

]
, (29)

due to the fact that Kj ≥ 1 for 1 ≤ j ≤ N . Since E
[
V 2
N

]
< ∞

and {VN}N≥1 are i.i.d., it follows that the right-hand side of
(29) is finite by Theorem 1 in Chapter 4 of [12], which implies
that (C2) also holds.

For the second part, it directly follows Lemma 1 in Chapter
6 of [12] that r∗(λ) is decreasing over λ.

In conclusion, the lemma is proved.

C. Proof of Proposition 4.1

To prove this proposition, we construct a “super” Markov
chain in which each state is a “super” vector of aggregated
energy levels across the whole network, whose the transition
probability matrix does not change over time t. Afterwards, we
prove that such a “super” Markov chain has a unique steady-
state distribution. Then, we show that for any time t in the
original Markov chain, one iteration to update Πi

t for 1 ≤ i ≤
I in Algorithm I is equivalent to the evolution of the state
distribution in the “super” Markov chain, which proves the
convergence of Algorithm I.

To construct such a “super” Markov chain, we need to joint-
ly consider the states of energy levels across all transmitters.
Denote Σ as the set of all possible battery states of the whole
system, i.e.,

Σ = {u = (u1 · · · uI) : u1 ∈ ∆1, . . . , uI ∈ ∆I} . (30)

Furthermore, we denote Bt as the battery state of the system
at time t, where Bt ∈ Σ. Note that the number of elements
in Σ is

(⌈
Bmaxδ
E1τ

⌉
+ 1

)
× · · · ×

(⌈
Bmaxδ
EIτ

⌉
+ 1

)
.

Suppose that Bt = u. There are I + 1 possible events at
time t: a transmission is performed by transmitter i, where
1 ≤ i ≤ I , and no transmission happens. Then, we can
compute the transition probability between any two states,
and the transition probability matrix P for {Bt}t≥0 can be
obtained. The details for the computation can be found in [20].
It can be shown that P is a stochastic matrix and is invariant
over time. Therefore, there exists a unique probability vector
Π such that the following equation holds [21]:

Π = ΠP. (31)

In fact, Π is the steady-state distribution of {Bt}t≥0.
So far, we have constructed a “super” Markov chain

{Bt}t≥0 for the whole system of which the steady-state

distribution exists and is unique. Therefore, by the iteration
Πt+1 = ΠtP, it follows that limt→∞ Πt = Π [21]. Thus,
we only need to show that

Πt+1 = ΠtP ⇔ Πi
t+1 = Πi

tP
i
t, 1 ≤ i ≤ I, t ≥ 0. (32)

If (32) is true, the state distribution of each transmitter
converges to the unique steady-state distribution. The proof
for (32) can be found in [20].

In conclusion, the convergence of Algorithm I is proved.
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