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Abstract—We consider three-node wireless relay channels in a
Rayleigh-fading environment. Assuming transmitter channel state
information (CSI), we study upper bounds and lower bounds on
the outage capacity and the ergodic capacity. Our studies take into
account practical constraints on the transmission/reception du-
plexing at the relay node and on the synchronization between the
source node and the relay node. We also explore power allocation.
Compared to the direct transmission and traditional multihop
protocols, our results reveal that optimum relay channel signaling
can significantly outperform multihop protocols, and that power
allocation has a significant impact on the performance.

Index Terms—Channel capacity, cooperative diversity, ergodic
capacity, power allocation, relay channel, wireless networks.

I. INTRODUCTION

WIRELESS ad hoc networks consist of a number of ter-
minals (nodes) communicating on a peer-to-peer basis,

without the assistance of wired networks or centralized infra-
structure. In such systems, the communications between nodes
might take place through several intermediate nodes. In wire-
less communications, channel impairments that limit capacity
include multipath fading, shadowing, and path loss.

Needless to say, high spectral efficiency is of vital importance
in ad hoc wireless networks (see, e.g., [1]–[6]). One approach
to increasing the capacity of wireless networks is to use coop-
erative diversity. Earlier works on cooperative communications
can be found in [7] and [8]. Recently, cooperative diversity has
been studied in [9]–[12] for cellular networks and in [13]–[17]
for ad hoc networks. Roughly speaking, several terminals, each
with one or more antennas, form a kind of “coalition” to cooper-
atively act as a large transmit or receive array. The channel can
therefore exhibit some characteristics of the MIMO channel.

In this paper, we take steps to obtain a fundamental under-
standing of cooperative diversity. In particular, we investigate
the three-node relay channel shown in Fig. 1. The desired trans-
mission is from the source node (node 1) to the destination node
(node 3), while the relay node (node 2) aids the communication
by using its “capture” of the transmission between node 1 and
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Fig. 1. The relay channel.

node 3. The Gaussian relay channel was introduced by van der
Meulen [18], [19] and used in connection with the Aloha system
[20]. It was thoroughly analyzed by Cover and El Gamal in [21],
where the capacity of the degraded relay channel was found, and
upper and lower bounds for the general relay channel were pre-
sented. The work [22] used a simpler coding argument based on
[7] to obtain the same achievable rate as in [21]. Very recently,
partly spurred by the work on cooperative diversity, the relay
channel has garnered much attention [23]–[36].

This paper focuses on wireless relay channels in a Rayleigh-
fading environment. We take into account some practical
constraints for wireless transceivers, such as synchronization
and transmission duplexing. For convenience, we say that the
relay node operates in the full duplex mode if the relay node
can receive and transmit simultaneously on the same frequency
channel. While there might exist some radio-frequency (RF)
techniques making this possible [37], it is in general regarded
unrealistic in practical systems, due to the dynamic range of
incoming and outgoing signals and the bulk of ferroelectric
components like circulators. We will therefore consider the
cases where the relay node operates in a frequency-division
(FD) manner or time-division (TD) manner.

We study upper bounds and lower bounds on the channel ca-
pacity. Specifically, we start with examining the capacity for
the fixed channel gain case, building on which we explore the
outage capacity. We then focus on the ergodic capacity.

The rest of the paper is organized as follows: we start with
the channel model in Section II. In Section III, we present ca-
pacity bounds for the fixed channel gain case and outage ca-
pacity for the fading channel cases, and Section IV contains the
main thrust on the ergodic capacity. Section V contains our con-
clusions. The proofs are relegated to Appendices A–E.

II. SYSTEM MODEL

Consider the relay channel in Fig. 1. The transmitter at
the source node sends a message to the
destination node, where the message is encoded into sym-
bols and transmitted over the channel,
under the power constraint . (The rate
is .) Let denote the received signal at the relay
node. Building on prior received signals, the relay node then
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transmits a message that is intended to aid the transmission
between source and destination, where is encoded based
on , subject to the power constraint

. Thus, the received signals at the relay
node and the destination node are given by

(1)

where and are independent additive white Gaussian noise
with unit variance (after normalization), and are the
channel gains with amplitude and phase separated, and modeled
as independent (flat) fading processes.

A few more words on relaying techniques. As noted before,
we say that the relay node operates in the full duplex mode if the
relay can receive and transmit simultaneously on the same fre-
quency channel. In contrast, if the relay node operates in a TD
manner, then for a given time window , the relay node is in the
receive mode for a fraction of the time (we call this period
the relay-receive period), and in the transmit mode for the rest

(we call this period the relay-transmit period). Simi-
larly, if the relay node operates in an FD manner, the bandwidth

is divided into a bandwidth of over which the relay node
listens, and a bandwidth of over which the relay node
transmits. The destination node listens over the whole band-
width . Clearly, from an information-theoretic point of view,
the TD mode and the FD mode are equivalent for the fixed
channel gain case. In fading channels, however, the TD mode
has an advantage over the FD mode because can be adjusted
to the instantaneous channel conditions, whereas is usually
fixed in the FD mode. Thus motivated, we focus on the TD relay
channels.

In the synchronized channel model, it is assumed that all
nodes have complete channel state information (CSI), i.e.,
each node knows the instantaneous values (magnitudes and
phases) of all as well as their statistics. It is furthermore as-
sumed that all nodes are perfectly synchronized. It is relatively
straightforward to obtain symbol (timing) synchronization
between different nodes; however, carrier synchronization
requires phase-locking-separated microwave oscillators, which
is very challenging in practical systems [38]. In light of this
observation, we also consider the asynchronous channel model
in which there is a random phase offset between the source
and the relay, and the corresponding received signal at the
destination is

(2)

where is random and ergodic, and is uniformly distributed in
(a model where is constant during the transmission is

considered in [39]). We assume that only the destination knows
(i.e., can estimate) . Note that the phase factor can be
incorporated into , that is, would have
the same distribution as . Modeled in this way, the phase

is unknown at the source and the relay. In summary, in the
asynchronous channel model, the source and the relay know the
amplitudes , but not necessarily the phases .

We now outline the cases to be considered. We consider all
four combinations of full duplex/TD and synchronized/asyn-
chronous transceiver models. We first consider the case where

the channel gains are fixed, and each node has a certain average
power constraint (per frame). We then consider outage capacity,
also with an average power constraint per node. We finally con-
sider ergodic capacity with optimum power allocation over time
and among the nodes; and the issue we investigate here is: what
is the minimum network power (energy) needed to transmit a
given amount (say one bit) of information at a given rate under
a bandwidth constraint, and how much can be saved (by the net-
work in total) by using a relay?

As a baseline for comparison, we will consider two strategies
commonly applied in networks: direct transmission between
source and destination and multihop transmission (routing). By
the latter we mean that a packet is first transmitted to the relay;
the relay decodes the packet, re-encodes it, and transmits it to
the destination in the next time slot; that is, the destination only
“uses” the transmission from the relay.

A few words about notation. The function denotes the
base logarithm. We define the average channel gain on each
link by

(3)

For notational convenience, we let denote an upper bound
on the channel capacity, and a lower bound. We will use to
denote the rate of a specific signaling scheme, i.e., an achievable
rate, which also constitutes a lower bound. A quantity (function,
parameter) used in an upper bound is denoted and in a
lower bound. Expressions common to upper and lower bounds
are written as , which involves quantities associated either
with an upper or a lower bound.

III. PRELIMINARY: THE FIXED CHANNEL GAIN CASE

We start with the bounds on the capacity of the relay channel,
assuming fixed channel gain coefficients . The results will
also be used to find the outage capacity in a fading channel.

A. Full Duplex Relaying

The capacity of the general memoryless relay channel was
studied in [21] (see also [40]), and the full duplex relay channel
falls into this class. In particular, using the “max-flow-min-cut”
theorem [40, Theorem 14.10.1] or [21, Theorem 4] yields the
following upper bound:

(4)

(5)

If the relay node decodes and re-encodes the message, the fol-
lowing rate is achievable [21, Theorem 1]:

(6)

(7)
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Note that if , the above achievable rate boils down
to the rate of the direct transmission between source and des-
tination. On the other hand, applying [21, Theorem 6]1 to the
Gaussian relay channel gives a rate

(8)

Then, the following rate serves as a lower bound:

(9)

Upper and lower bounds in the asynchronous case can be
found by setting (the proof of this is similar to the
proofs of Propositions 1 and 2 later). Interestingly, for the asyn-
chronous case, the upper bound (5) and lower bound (7) meet if

is sufficiently large, indicating that the exact capacity of the
relay channel can be found, which was first observed in [36].

B. Time-Division Relaying

In this section we will generalize the results in the previous
section to TD relaying, which was not included in [21]. Recall
that in the TD mode, given a time window , the relay is in the
receive mode for a fraction of the time (the relay-receive pe-
riod), and in the transmit mode for (the relay-transmit
period). The source node can transmit in both the relay-receive
and the relay-transmit periods. Suppose that the source node
transmits with power during the relay-receive period, and
with power during the relay-transmit period; the relay node
transmits with power . Denote the corresponding capacity as

. We then have the following upper bound
on the capacity of the TD relay channel. This is a relatively
straightforward application of [40, Theorem 14.10.1] or [21,
Theorem 4] (the proof can be found in Appendix A).

Proposition 1 (Upper Bound): The capacity of the TD relay
channel is upper-bounded by

(10)

with

(11)

(12)

Furthermore, an upper bound for the asynchronous relay
channel is obtained by putting .

Consider the case where the relay can decode what it has re-
ceived during the relay-receive period, re-encode it, and transmit

1[21, Theorem 6] only applies to the discrete alphabet relay channel. How-
ever, using [21, eqs. (76a) and (76b)] for Gaussian distributions yields (8). Al-
ternatively, the method of proof we use for Proposition 3 in the Gaussian case
can also be applied to the full duplex relay channel and will result in (8) in the
Gaussian case.

during the relay-transmit period. We have the following proposi-
tion on the achievable rate (we call this rate the decode-forward
rate).

Proposition 2 (Achievable Rate: Decode-Forward): The ca-
pacity of the TD relay channel is lower-bounded by

with

(13)

(14)

The optimum value of can be found in closed form (see
[42]). Furthermore, an achievable rate for the asynchronous
relay channel is obtained by putting in (2).

The proof of Proposition 2, relegated to Appendix A,
shows that, as opposed to the full duplex channel of [21],
block-Markov coding is not needed for the TD relay channel.

Instead of using “decode-forward,” an alternative approach is
to let the relay use Wyner–Ziv lossy source coding [41] on the
received signal. The compressed signal is then transmitted to
the destination using an (error-free) channel encoding. The fol-
lowing proposition gives the rate for both the synchronized and
the asynchronous cases (the proof is in Appendix A). The propo-
sition can be viewed as a generalization of [21, Theorem 6].

Proposition 3 (Achievable Rate: Compress-Forward): The
rate is achievable if

(15)

where is the “compression noise” given by

(16)

If , the decode-forward approach would not work,
and only the compress-forward approach can be used. The com-
press-forward method can be used for all channels and always
gives a rate gain over the direct transmission, but as becomes
larger compared to , the decode-forward rate would be even-
tually larger than the compress-forward rate (see Fig. 2). In gen-
eral, a higher rate is obtained by taking the maximum of the rates
of Propositions 2 and 3.

In the above, we have assumed that the parameters , ,
, are fixed. We now consider that the source node and the

relay node are subject to average power constraints and .
Since the relay only transmits during the relay-transmit period
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Fig. 2. Capacity bounds for TD relay channels with fixed channel coefficients, P = P = 5 dB and c = 1. The curve “Direct” is the rate for direct
transmissions, and “Direct 2� P ” is the rate for direct transmissions when the source has twice the power.

of length , it can use power during the transmis-
sion period. Similarly, the source node transmits with power
during the relay-receive period and with power during
the relay-transmit period, where so that the average
power constraint is satisfied. The capacity is given by

(17)

While the optimum value of in Propositions 2 and 1 can be
found in closed form (see [42]), the optimization of and
needs to be done numerically. Upper and lower bounds to the
capacity (17) can then be found using the propositions. Unfor-
tunately, as opposed to the full duplex case, the upper and lower
bounds never meet in nontrivial cases, even in the asynchronous
case.

To illustrate the above results, Fig. 2 shows upper and lower
bounds for different fixed values of .

C. An Application to Outage Capacity

The bounds on capacity for fixed channel gains can be used to
find bounds on outage capacity. The outage capacity of a fading
channel is defined by [43]

(18)

where is the rate for a specific realization of the fading
process. Thus, to find the outage capacity, we first find the rate

for specific values of , and the outage capacity can then be cal-
culated as the percentile of the random variable .
By using the upper and lower bounds from the previous section
we can then find upper and lower bounds on the outage capacity.

Fig. 3 plots outage capacity versus the signal-to-noise ratio
(SNR) in the direct link when all links experience indepen-
dent Rayleigh fading. The curves are calculated based on an
ensemble of by Monte Carlo simulations for each value
of the SNR. We also compare the results above with multihop
transmission for which the achievable rate is

While the figure shows only two examples, they are typical for
the many other examples we have considered. It should be no-
ticed that upper and lower bounds are close, that the gain from
synchronization is limited, and that relaying clearly outperforms
the traditional multihop strategy, in particular at high SNR.

IV. BOUNDS ON ERGODIC CAPACITY

We now turn to studying the ergodic capacity for wireless
relay channels. As stated in the Introduction, the problem here
is what is the minimum network power (energy) needed to
transmit a given amount (say one bit) of information at a certain
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Fig. 3. Outage capacity for the relay channel with independent Rayleigh fading. Source and relay have equal power, and the x axis corresponds to the SNR for
the direct link. The solid curve is for the upper bound, and the dashed curve is for the lower bound. Part (a) is for s = s = 12 dB and part (b) for s = s =

20 dB (s is defined in (3)). “Direct 2�P ” is the rate for direct transmission when the source has twice the power. “2 Tx Antenna” is the rate for direct transmission
when the source has two antennas.
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rate under a bandwidth constraint. This is equivalent to finding
the rate under a total power constraint, .

A. Ergodic Capacity: The General SNR Case

First consider the full duplex case. Set ,
where is used for transmission to the relay, and for
transmission to the destination (i.e., in earlier notation

, ). Power allocation dictates that ,
, and are functions of . Using the

upper bound (4), together with the fact that the optimum dis-
tribution for fixed is Gaussian [44], [43], we have (a formal
argument is given in the proof of Proposition 4)

(19)
with

(20)

(21)

It remains to find the optimum functions , , and
, and this is a power allocation problem. To this end, first

fix . For fixed , the rate is maximized
when we set

and

(a beamforming solution). We then get a simplified problem

(22)

with

(23)

(24)

For the achievable rate, we similarly get a decode-forward so-
lution (see Appendix B for details about the coding used)

(25)

with

(26)

TABLE I
POWER ALLOCATION ALGORITHM FOR THE FULL DUPLEX CASE. THE

PROCEDURE CALCULATES P AND P FOR SPECIFIC VALUES OF t AND �

(27)

For asynchronous signaling, we get a similar solution by re-
placing by in (24) and (27). Since there is no beam-
forming gain, , , and is the op-
timum. To unify the treatment of the different cases, we define

(28)

(29)

synchronized
asynchronous.

(30)

The optimization problems for both upper and lower bounds
can be solved by using a kind of “water-filling” techniques
(see Appendix B), and the solutions are stated in the following
proposition.

Proposition 4 (Ergodic Capacity: Full Duplex Relaying):
Define

(31)

(32)

where the functions and are given in
Table I. Let be the solution to the equations

(33)
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(34)

The capacity of the relay link is then bounded by

(35)

In the TD relay channel, the relay cannot receive while it
transmits. Accordingly, an upper bound on the capacity and a
lower bound can therefore be obtained by the following modifi-
cation of the full duplex problem:

(36)

with

(37)

(38)

The details of the above optimization can be found in
Appendix D. The solutions are stated as follows.

Proposition 5 (Ergodic Capacity: Time-Division Relaying):
Define

(39)

(40)

where , and are given in Table II. Let
be the solution to the equations

(41)

(42)

The capacity of the relay link is then bounded by

(43)

We also consider the asynchronous channel without power
allocation; by this we mean that the network does not allocate
power based on instantaneous channel state, while it still allo-
cates power between source and relay based on channel statis-
tics. It is then easily seen that the capacity bounds for full duplex
are given by

(44)

TABLE II
POWER ALLOCATION ALGORITHM FOR THE TD CASE. THE PROCEDURE

CALCULATES P AND P FOR SPECIFIC VALUES OF t AND �

For the TD case, we also assume that the network allocates the
relay-receive and relay-transmit time intervals based on average
channel conditions, and we then get the bounds

(45)

We now illustrate our findings on ergodic capacity via nu-
merical results. We compare our results with simple multihop
forwarding. For fair comparison, we allow the network to opti-
mize power allocation and relay receive/transmit durations base
on channel statistics. Accordingly, we have that
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Fig. 4. Ergodic capacity of the relay channel in a Rayleigh fading channel with s = s = 12 dB relative to s , which is also the SNR. All curves are for
synchronized transmission, except the curve for no power allocation.

(46)

Fig. 4 shows the different rates versus SNR for
12 dB relative to (see (3); all channel gains are relative to

) and all paths are independently Rayleigh fading. The curves
are generated using Monte Carlo simulation to generate an en-
semble of values which is then used to calculate upper and
lower bounds.

We note that the upper and lower bounds are close in many
cases of interest. Moreover, it should be noted that traditional
multihop signaling is clearly suboptimum compared to the
relay signaling, in the sense that the slope of the rate increase
is smaller than that for the relay signaling, especially at high
SNR. For SNR larger than 5 dB, all curves (except multihop)
are approximately parallel lines. The offset between the lines
(either in terms of rate or power) therefore can be used to
characterize the gain of relaying at (reasonably) high SNR. It
turns out that this offset can be calculated explicitly, and this is
studied in the following section.

B. Ergodic Capacity in the High-SNR Regime

Clearly, the solutions for the bounds and the power allocation
for general cases are complicated. It turns out, however, that in
the high-SNR regime there exist simple closed-form solutions

(cf. the high-SNR results for the multiple-input multiple-output
(MIMO) channel in [45]). As mentioned in the previous sec-
tion, in the high-SNR regime, the capacity of the relay channel,

SNR satisfies

SNR SNR

where SNR is the capacity for the direct link and
is a constant. To formalize this, we define the asymptotic relay
gain by

SNR SNR (47)

By SNR , we mean that the noise power while
the total power constraint is kept constant. Our goal is to find
bounds for . It turns out that at high SNR, the complicated
power allocation rules in Tables I and II become much simpler.

Since only bounds on the capacity have been found, it is not
clear that the limit (47) exists for the capacity. More formally,
we say that are bounds for the relay gain if they satisfy

SNR SNR (48)

SNR SNR (49)

Another way to look at the gain by relaying is in terms of the
additional power needed for direct transmission to get the same
rate as with a relay; we call this high-SNR limit the asymptotic
power gain. It is easily seen that the relationship between the
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asymptotic relay gain and the asymptotic power gain (in deci-
bels) is

in dB (50)

We will now state the main results in the high-SNR regime.
The asymptotic relay gain for full duplex is found in Appendix C
and stated in the following proposition.

Proposition 6: High-SNR Relay Gain: Full Duplex Synchro-
nized Case: In the high-SNR regime (i.e., ) the op-
timum values of and for both upper and lower bounds
in the synchronized case converge toward

otherwise

otherwise
(51)

(52)

In a Rayleigh-fading channel, is given by (for )

(53)

for the achievable rate, and

(54)

for the upper bound. Here

(55)

In addition, the asymptotic relay gain is bounded by

(56)

Note that power allocation rule (51) does not depend on the
characteristic of the fading channel (i.e., it is not specific to
Rayleigh fading), and it is the same for upper and lower bounds.
(The above proposition is for the case ; results for

can be found by taking the limit .)
For asynchronous signalling, we have the following.

Proposition 7: High-SNR Relay Gain: Full Duplex Asyn-
chronous Case: In the high-SNR regime (i.e., ), the
optimum values of and for both upper and lower bounds
in the asynchronous case converge toward

otherwise

otherwise.
(57)

In Rayleigh fading, the value of is given by

(58)

where

(59)

for the achievable rate, and

(60)

for the upper bound. The asymptotic rate gain is bounded by

(61)

The preceding results give upper and lower bounds on the ca-
pacity (not the exact capacity). However, it is possible to bound
the gap between the upper and lower bounds for both the syn-
chronized and asynchronous cases (Propositions 6 and 7).

Corollary 1: The rate difference and the power difference
between the upper and lower bounds in the Rayleigh-fading case
satisfy

rate: (62)

power 1.33 dB (63)

and the maximum of the differences occurs when
.

For most values of , is smaller than 1.33 dB. A
closer examination of the difference reveals that it is only in a
small neighborhood of the ridge that the difference
can be significant.

The achievable rates in Propositions 6 and 7 are based on
using decode-forward. As seen for the fixed-channel case in
Section III, a compress-forward scheme, based on Wyner–Ziv
rate-distortion theory, can yield a higher rate than the decode-
forward scheme in certain regions. We now consider a com-
press-forward scheme for ergodic capacity. As shown by Propo-
sitions 6 and 7, finding ergodic capacity is much simplified in
the high-SNR regime, and we consider the compress-forward
scheme only in this regime. The power control rule (57) com-
bined with Gaussian Wyner–Ziv compression is applied for each
given . The details of the approach can be found in Appendix E.
We have the following proposition.

Proposition 8: High-SNR Relay Gain: Full Duplex Com-
press-Forward: Define the function as the solution to the
equation

(64)

For Rayleigh fading, the following rate gain is achievable using
compress-forward in the high-SNR regime (i.e., ):

(65)
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Numerical evaluation of this compress-forward rate shows
that it can give a gain of around 0.5 dB over decode-forward
in the region 5 dB, 0 dB, but otherwise is inferior
to decode-forward.

For the asynchronous channel without power allocation,
bounds for the asymptotic relay gain in Rayleigh fading can be
easily found to be

(66)

(67)

where the maximization over must be done numerically.
We now turn to the TD case. As in the full duplex case, we

get a simple power allocation rule for the synchronized case for
high SNR

and

otherwise

and

otherwise
(68)

(69)

Unfortunately, because of the complicated condition for joint
transmission (69) we cannot evaluate the Rayleigh integrals an-
alytically, and we have to find as well as the asymptotic relay
gain numerically, see Appendix D.

For the asynchronous TD case we get the asymptotic power
allocation rule

and

otherwise

and

otherwise
(70)

(71)

Since we do not have closed-form expressions for the bounds
in the TD case, we cannot exactly bound the difference between
upper and lower bounds as in Corollary 1. However, extensive
numerical evaluation of the bounds show that the difference also
seems to be bounded, and that

(72)

For the TD case without power allocation, we can find the fol-
lowing bounds for the asymptotic relay gain in Rayleigh fading
using the results from Propositions 1-2 and taking limits:

(73)

(74)

C. Discussions on the High-SNR Case

The asymptotic relay gain characterizes the gain from
relaying at reasonably high SNR. Furthermore, since the
difference between upper and lower bounds is bounded (see
Corollary 1), we can use the achievable rates to characterize
the gain of relaying. Figs. 5 and 6 compare the asymptotic
relay gain for a number of different signaling schemes over
Rayleigh fading. The comparison is done for values of and

between 10 dB and 20 dB. Fig. 5(a) shows the relay gain
for full duplex synchronized relaying. Figs. 5(b) and 6 show
the loss by different constraints on the signaling.

V. CONCLUSION

In this paper, we have studied upper and lower bounds on the
ergodic capacity and the outage capacity, for a variety of wire-
less relay channel models. In many cases of interest, the gap
between the upper bounds and lower bounds is small compared
to the relaying gain (as shown by both analytical and numer-
ical examples), which sheds insights on the channel capacity. A
number of conclusions can be drawn based on our results.

• Compared to direct transmissions without a relay, relay
channel signaling yields performance gain, for both er-
godic capacity and outage capacity.

• Optimal relaying outperforms traditional multihop
protocols.

• Power allocation can yield a significant gain in wireless
relay channels, in particular when the relay operates in
the TD mode.

• Since transmitter CSI makes power allocation possible,
transmitter CSI leads to higher rates, even at high SNR.
This is in contrast to the case of the point-to-point single-
antenna channel [44], [46], but is in line with the point-to-
point MIMO channel [47], [48].
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Fig. 5. (a) High-SNR relay gain for full duplex synchronized signaling. (b) Difference between full duplex and TD for synchronized signaling.
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Fig. 6. High-SNR relay gain, achievable rate for TD. (a) Difference between synchronized and asynchronous signaling. (b) Difference between
asynchronous signaling with power allocation and asynchronous signaling without power allocation.
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APPENDIX A
PROOFS FOR THE FIXED CHANNEL GAIN CASE

Proof of Proposition 1

Let be the transmitted sequence from
node 1. The relay, node 2, receives the first transmitted
signals as , and after that transmits a
sequence . The result in [21,
Theorem 4] or [40, Theorem 14.10.1] gives the following
nonsingle letter bound (i.e., [21, eq. (53)]) on the rate :

(75)

In the relay-receive period, the relay does not transmit so that
. On the other hand, in the relay-transmit period, the

relay does not receive, and therefore for

We then get

(76)

By letting and using standard arguments as in [40] we
get the following single-letter bound on the capacity̧:

(77)

In the synchronized Gaussian case, the same argument as in [21]
shows that this bound is maximized by letting be Gaussian
with power , , and Gaussian with powers and

, respectively, and

Theorem 1 follows.
In the asynchronous case, the phases of the source and relay

transmissions cannot be synchronized, i.e., the argument of the

complex random variables and are independent. To
derive an upper bound in this case, first notice that

(78)

(79)

(80)

since conditioning reduces entropy. Inserting this in (77) we get
a weaker upper bound

(81)

Next, Lemma 1 below shows that (and
) are maximized for indepen-

dent Gaussian. This shows that (81) provides an upper bound
in the asynchronous case by letting be independent
Gaussian, which is equivalent to putting in the expres-
sions (11) and (12).

Lemma 1: Let and be complex random variables
with an arbitrary joint distribution satisfying ,

, let be zero-mean, circular Gaussian inde-
pendent of and , and let be uniform over , and
independent of , , and . Put . Then
the differential entropy is maximized for and
independent Gaussian.

Proof: Notice that

(82)

(83)

(84)

But among all random variables with power bounded by
, the Gaussian random variable with power
maximizes entropy [40], and that is achieved when

and are independent Gaussian.

Proof of Proposition 2

There are two coding methods for the relay channel that give
the same rate (and the capacity for the degraded relay channel
[21]): the original list decoding method in [21] and backward
decoding in [22] based on [7]. A simpler argument using parallel
(Gaussian) channel arguments, used by several authors [8], [49],
[50], gives the same rate as the preceding two methods. It can be
shown that also in the TD case, all three coding methods give
the same rate; we will provide an argument based on parallel
(Gaussian) channels. It can be noticed that it is not necessary
to use block-Markov coding [21], as opposed to the full duplex
relay channel.
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We split the message into two independent parts: A part
which is transmitted directly to the destination without the help
of the relay at a rate , and a part which is transmitted
through the relay to the destination at a rate . The total rate
is then .

We define three codebooks: has elements
independent and identically distributed (i.i.d.) according to a
Gaussian distribution with power , has
elements with power , and has
elements with power .

The transmission and decoding scheme is as follows. During
the relay-receive period, the source transmits . The
relay can decode if

(85)

During the relay-transmit period, the relay transmits

The source transmits .
The destination starts by decoding from ,

treating as noise. Using the theory for parallel
Gaussian channel [40], it can do so if

(86)

It then subtracts from the received signal

and decodes from ; it can do so if

(87)

Adding (87) and (86) gives (13); (85) and (86) gives (14).

Proof of Proposition 3

As in the proof of Proposition 2, the message is split into two
parts: transmitted directly and transmitted through the
relay, with a total rate .

The encoding and transmission schemes are as follows. The
message is encoded using the codebook with
elements, each following a Gaussian distribution with power

. The signal is transmitted during the relay-re-
ceive period. The resulting received signal at the relay is
compressed to the index (the mechanism
is outlined below). During the relay-transmit period, the relay
transmits , with a Gaussian codebook with el-
ements with power . Simultaneously, the source transmits

with with power .

The destination starts by decoding and . During the
relay-transmit period, the channel is a multiple-access channel
(MAC), and it can therefore do so if2

(88)

(89)

It now uses and to decode .
The compression at the relay follows [51], [41], [40], partic-

ularly the rate distortion theory with side information at the de-
coder in [51] which extended [40, Theorem 14.9.1] to the con-
tinuous-alphabet case. The main idea is to use and the side
information to construct an estimate at the destina-
tion. The proof of the “direct half” in [51] is done by quantizing
the ranges of and . Let and denote the corre-
sponding quantized versions. For any , the quantization
can be chosen so that

(90)

and so that Lemma 5.3 in [51] is still valid (by refining
partitions).

For a given quantization level, the decoder at the destination
uses joint typicality to decode from and . By stan-
dard arguments it can do so with small probability of error if

(91)

(92)

according to [51, Fig. 4] we have

(93)

(94)

where is a constant (that can be found from [51] but does
not influence the final result), and is a Gaussian variable
independent of and with variance . This variance is
determined by the fact that the rate of the compressed signal
is constrained to the rate the relay has available, so according
to [51, Theorem 2.2] and Section III

(95)

(96)

(97)

(98)

Inserting (88) in (98) gives (16) and (89), (92), and (94) with
gives (15).

2R and R can be chosen anywhere on the “sum rate side” in the MAC
pentagon (between C and B in [40, Fig. 14.14]) with the same resulting rate for
the relay channel.
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APPENDIX B
BOUNDS ON ERGODIC CAPACITY:

THE FULL DUPLEX RELAYING CASE

For later use in calculating limits for SNR , we will
re-introduce the explicit noise power . Let be a spe-
cific realization of the fading process. The max-flow-min-cut
bound gives

(99)

(100)

and

(101)

(102)

The power constraint is , to-
gether with , . Notice that we can always
find an optimum solution with . If we have a solution

with , put

and let the corresponding rates be , . Then is a de-
creasing function of , for , and an increasing
function. By continuity we then have for some
Similarly for .

Thus, we can state the optimization problem as the Lagrange
problem of maximizing3

(103)

(104)

A few comments on this Lagrange optimization problem. Fix
, and suppose that for some we have found an uncon-

strained maximum to satisfying . Then this is also
a solution to the original constrained problem for some power
constraint. In addition, the problem splits up in individual coor-
dinate problems

(105)

3The explicit Lagrange multipliers corresponding to the constraintsP [i] �
0, P [i] � 0 have been omitted.

(106)

Thus, the problem reduces to the problem maximizing for
given , .

Differentiating with respect to and and equating
to zero, we get the equations

From the second equation we get

(107)

There are four possibilities, depending on whether
and are zero, or strictly positive. First, consider the case

, . Then

(108)

(109)

Second, consider , . Then

(110)

with the condition

(111)

Consider now the cases with . is then the solu-
tion to

(112)

Or (with )

(113)

By looking at the coefficients of this second-order equation, it
is seen that if

(114)

it has one negative and one positive root; otherwise, it has two
negative roots. If (114) is satisfied, and (110) is not a solution,
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there are two solutions to the Lagrange problem: 1)
and or equal to the positive solution to

(113) and . The correct solution can be found by in-
serting each of the solutions in the expression (106) for and
choosing the one that maximizes .

Then, by letting and using the ergodicity of the fading
process, we arrive at the solution in Table I. For simplicity of
notation we have used for the Lagrange parameter;

can be interpreted as a water-filling level similar to in [40,
Sec. 10.4].

For the achievable rate we consider decode-forward. If
, the source bypasses the relay. If , the source trans-

mits to the relay, which decodes the transmission, puts it into a
queue, and transmits the output of the queue to the destination.
Call the direct rate , the rate through the relay with total
rate . We then get the following rate:

(115)

(116)

(117)

For achievable rate, any power allocation rule
will give a valid rate as seen by the

arguments in [44]. The results in Table I is obtained by
replacing with everywhere in the
Lagrange optimization problem.

Finally, the asynchronous solution follows along the same
lines by replacing with everywhere.

APPENDIX C
BOUNDS ON ASYMPTOTIC RATE GAINS:

THE FULL DUPLEX RELAYING CASE

Proof of Proposition 6

First we will prove the power allocation rule (51). Notice that
for suitably small, the condition (111) is not satisfied, and

, is not a solution. On the other hand,
(108) is satisfied, and inserting (108) in (109) we get

(118)

We see that for arbitrary small if and only if

(119)

For , the largest solution of (112) converges toward
, i.e., . The condition

that this is a solution to the Lagrange problem is that given
by (107) is negative

(120)

For this is the opposite condition of (119).
Thus, we have proven that for a specific value of and fixed ,

the Lagrange solution converges toward (again with )

otherwise.
(121)

Furthermore, the solution (121) gives a constant total transmit
power , and it follows (i.e., Lebegues dominated convergence)
that , and the solution (51) follows.
The proof for the achievable rate is similar.

Let denote the probability measure for and
that for . If has a probability density function

, then in the following.
From continuity and the Lebesgue dominated convergence

(122)

(123)

We have to find so that . Define

Then

(124)

(125)
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The equation now reduces to

(126)

Or

(127)

For Rayleigh fading, where is exponentially distributed,
all the integrals involved can be evaluated in closed form. For
example

(128)

The other integrals needed are evaluated below. The evaluations
and following simplifications have been done by a symbolic
analysis program (Maple) aided by calculations by hand, and
are rather straightforward but tedious

(129)

(130)

(131)

(132)

where is Euler’s constant. Inserting this in (127) we then get
(54).

We finally calculate the asymptotic relay gain. First notice
that in the high-SNR regime, power control for direct transmis-
sion is not needed (i.e., it does not give any gain). This follows
directly from the results in [44]. We can therefore define the fol-
lowing rate for direct transmission:

(133)

The rate gain relative to direct transmission for can then
be found as (the term appears in both
definitions, and therefore cancels out). We get

(134)

(135)

Proof of Proposition 7

For the asynchronous case, we can go through the same set
of calculations, replacing with and with .
Notice that for it does not pay to let the relay transmit:
the destination knows at least as much about the message as
the relay, and it has a better connection. By going through the
Lagrange solution, taking limits, and excluding solutions with

and , we get the asymptotic power allocation
law

otherwise.

(136)

As for the synchronized case, the transmit power is constant,
and we therefore arrive at the solution (57). We have to find to
solve . Denote by .
Then
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(137)

(138)

The equation reduces to

(139)

Or

(140)

To solve this we need the following integral in addition to
(128)–(132):

(141)

The integral can be evaluated in closed form, but gives a compli-
cated expression that we will not write down here. However, in-
serting this in (140) and reducing, we get the following left-hand
side of (140):

(142)

while the right-hand side is unchanged from the synchronized
case. The rate gain relative to direct transmission for can
now be evaluated to

(143)

(144)

Proof of Corollary 1

We will briefly outline the proof of the corollary. For con-
venience, we normalize all by , . It is first

proven that for each fixed value of , is an increasing
function of for both the synchronous and asynchronous case;
therefore,

(provided the limit exists). In both cases

(145)

It is now easy to prove that the expression inside the has its
maximum at . The expression (145) actually gives an
upper bound on the difference for any fixed value of

, that can be used to show how close the bounds
are away from the worst case.

APPENDIX D
BOUNDS ON ERGODIC CAPACITY:

THE TIME-DIVISION RELAYING CASE

Let be a specific realization of the fading process.
The max-flow-min-cut bound gives

(146)

(147)

(148)

(149)

(150)

The power constraint is , to-
gether with , . We will argue that we
can restrict our attention to solutions with . First,
if we have a solution with , we can find a solution
which is at least as good with by decreasing .
Therefore, consider a sequence of solutions with

and . is a sum of terms where
the relay receives ( ) and terms where the relay trans-
mits ( ). By ”switching off” the relay reception for
some of the terms where the relay receives, we can decrease

to . Furthermore, for any and for large
enough, we can do this so that . By de-
creasing as above, we then have a solution and

. We can, therefore, find a sequence of solu-
tions with and .
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As for full duplex, the problem reduces to maximization of
, where

(151)

(152)

The difference is that is no longer continuous in the variable
, see (150). We therefore have to find both the maximum on

the boundary (this corresponds to the solution ,
in Table II) and in the interior (this corresponds to

the solution , in Table II). These two solutions should
then be compared to see which one maximizes , which is
done in Table II by comparing and . Detailed calcu-
lations to find the solutions are along the same lines as for full
duplex.

For the asymptotic solution when , we can argue as for
full duplex that only two of the solutions are relevant for small
enough, and that the solution with (joint transmission) is

selected if , with the additional condition that the joint
transmission solution is only used if it maximizes , which in
the asymptotic limit reduces to the condition

(153)

or

(154)

We then get (68)–(69).
Define as the region of where joint transmis-

sion is used. We can then write the rates as

(155)

(156)

The equation reduces to

(157)

(158)

It appears that this equation (and the integrals) must be solved
numerically to find because of the complicated shape of .
The rate gain can be found (numerically) from (134) with the
new definition of .

For the asynchronous case, we use joint transmission if

(159)

or

(160)

The rates are now

(161)

(162)

The equation reduces to

(163)

and the rate gain can be found from (143).

APPENDIX E
PROOF OF PROPOSITION 8

We use the asymptotic power allocation rule from the asyn-
chronous case, i.e., and are functions of given by
(57). For now we let the value of be open (i.e., some fixed
unknown value); the value of is found by optimizing over
the solution found in the following. Consider a fixed . The re-
ceived signal at nodes 2 and 3 is then Gaussian, and we can use
the same coding method as in Proposition 3, modified to full
duplex. Thus, the received signal at node 2 is Wyner–Ziv com-
pressed to a rate , and the power of the resulting “com-
pression noise” given by (98), which for full duplex and with

explicitly reintroduced is

(164)

The problem is how to choose the function . We suggest
to choose so that becomes a constant independent of
. Solving for results in

(165)
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The compressed signal is transmitted on the channel between
the relay and the destination. The capacity of this channel, with
the power allocation rule (57) is given by

(166)

with

Now, as in the proof of Proposition 3, the rate of the compressed
signal must match the capacity of the channel between relay and
the destination, i.e., we must have . Since the
power allocation rule is fixed (for specific ), this amounts to
finding the value of the constant . We will restrict ourselves
to solving this problem in the high-SNR regime for
Rayleigh fading. First, the capacity of the forwarding channel
between relay and destination is

(167)

Clearly, is also a function of . As will be seen in the
following, we get a valid solution for if we put

, where is a constant independent of . then
becomes

(168)

and further

(169)

For given we can then find by equalizing given by (167)
and given by (169).

We will finally calculate the asymptotic relay gain achieved.
First, by using maximum ratio combining at the destination as
in the proof of Proposition 3, we get the following rate:

(170)

and

(171)

The asymptotic relay gain can now be found as with
given by (133)

(172)

This should then be maximized with respect to , bearing in
mind that is also a function of .
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